[1]
Feihu Yang. Research on Feature Selection Approach and its Application in Network Traffic Identification[D]. Nanjing: Nanjing Communication University, (2012).
Google Scholar
[2]
He Deng. Research on Network Traffic Classification Based on Machine Learning Method[D]. Zhuzhou: Hunan Industrial University, (2009).
Google Scholar
[3]
Moore A W, Zuev D. Internet traffic classification using bayesian analysis techniques[C]. International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS). Alberta (Canada), 2005: 50-60.
DOI: 10.1145/1064212.1064220
Google Scholar
[4]
Yang Aimin, Zhou Yongmei, Deng He, et al. Method of feature generation and selection for network traffic classification[J]. Journal of Shandong University, 2010, 40(5): 1-7.
Google Scholar
[5]
Huang Junyi, Wu Jing, Zhang Hui. Analysis of Feature Selection Effect on IP Traffic Classification Algorithms[J]. Computer Engineering, 2010, 36(16): 68-70.
Google Scholar
[6]
Huang Hongyan. Lightweight Intrusion Detection System Based on Feature Selection. [D]. Baoding: Hebei University, (2009).
Google Scholar
[7]
Haitham A. Jamil, Roozbeh Zarei, Nadir O. Fadlelssied, et al. Analysis of Features Selection for P2P Traffic Detection Using Support Vector Machine[C]. International Conference of Information and Communication Technology. Bandung, 2013: 116-121.
DOI: 10.1109/icoict.2013.6574558
Google Scholar
[8]
A. W. Moore, D. Zuev. Internet traffic classification using bayesian analysis techniques[C]. Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement and Modeling of Computer Systems. USA(New York), 2005: 50-60.
DOI: 10.1145/1064212.1064220
Google Scholar
[9]
Li Jun, Zhang Shunyi, Liu Shidong, et al. P2P traffic identification technique[C]. Computational Intelligence and Security, 2007 International Conference on. China(Harbin), 2007: 37-41.
DOI: 10.1109/cis.2007.81
Google Scholar
[10]
Yuexiang Yang, Rui Wang, Yang Liu, et al. Solving P2P traffic identification problems Via optimized support vector machines[C]. Computer Systems and Applications, 2007. AICCSA'07. IEEE/ACS International Conference on. Amman, 2007: 165-171.
DOI: 10.1109/aiccsa.2007.370879
Google Scholar
[11]
Pascoal C, Rosario de Oliveira M, Valadas R, et al. Robust Feature Selection and Robust PCA for Internet Traffic Anomaly Detection [C]. INFOCOM, 2012 Proceedings IEEE. Orlando, 2012: 1755-1763.
DOI: 10.1109/infcom.2012.6195548
Google Scholar
[12]
Naikal N, Yang A Y, Sastry S S. Informative feature selection for object recognition via sparse PCA[C]. Computer Vision (ICCV), 2011 IEEE International Conference on. Barcelona, 2011: 818-825.
DOI: 10.1109/iccv.2011.6126321
Google Scholar
[13]
J Friedman. Another approach to polychotomous classification, Technical report [R] Stanford University, Department of Statistics, (1996).
Google Scholar
[14]
V N Vapnik. Statistical Learning Theory[M]. Wiley Inter-Science, 1998: 493-520.
Google Scholar
[15]
Ran Wang, Sam Kwong, Degang Chen. A new method for multi-class support vector machines by training least number of classifiers[C]. Proceedings of the 2011 International Conference on Machine Learning and Cybernetics. China(Guilin), 2011: 648-653.
DOI: 10.1109/icmlc.2011.6016830
Google Scholar