[1]
W. Diffieand M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol. IT-22, p.644–654, (1976).
DOI: 10.1109/tit.1976.1055638
Google Scholar
[2]
R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaining digital signatures and public-key cryptosystems(reprint), Commun. ACM, vol. 26, no. 1, p.96–99, (1983).
DOI: 10.1145/357980.358017
Google Scholar
[3]
C. Gentry. Fully homomorphic encryption using ideal lattices. STOC, 2009, 169–178.
Google Scholar
[4]
M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully homomorphic encryption over the integers, EUROCRYPT, 2010, 24–43.
DOI: 10.1007/978-3-642-13190-5_2
Google Scholar
[5]
J.S. Coron,A. Mandal,D. Naccache and M. Tibouchi, Fully Homomorphic Encryption.
Google Scholar
[6]
Integers withShorter Public Keys. CRYPTO, 2011, 6841: 487-504.
Google Scholar
[7]
J.S. Coron, D. Naccache and M. Tibouchi. Public key compression and modulus switching for fully homomorphic encryption over the integers. EUROCRYPT, 2012, 7237: 446–464.
DOI: 10.1007/978-3-642-29011-4_27
Google Scholar
[8]
C. Gentry, A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University, (2009).
Google Scholar
[9]
Enderton, Herbert. A mathematical introduction to logic(2nded. ), Boston, Academic Press, (2001).
Google Scholar
[10]
N.P. Smart,F. Vercauteren, Fully homomorphic encryption with relatively small key and ciphertext sizes. PKC 2010, 6056: 420-443.
DOI: 10.1007/978-3-642-13013-7_25
Google Scholar
[11]
D. Stehle,R. Steinfeld, Faster fully homomorphic encryption. ASIACRYPT 2010, 2010, 6477: 377-394.
DOI: 10.1007/978-3-642-17373-8_22
Google Scholar
[12]
C. Gentry, S. Halevi, Implementing Gentry's fully homomorphic encryption scheme. EUROCRYPT 2011, 6632: 129-148.
DOI: 10.1007/978-3-642-20465-4_9
Google Scholar
[13]
Z. Brakerski,V. Vaikuntanathan. Fully Homomorphic Encryption from Ring-LWE and security for Key Dependent Messages, CRYPTO 2011, 6841: 505-524.
DOI: 10.1007/978-3-642-22792-9_29
Google Scholar
[14]
C. Gentry,S. Halevi N.P. Smart. Better Bootstrapping in Fully Homomorphic Encryption, Cryptology ePrint Archive, 2011, Report 2011/680.
Google Scholar
[15]
C. Gentry,S. Halevi. Fully Homomorphic Encryption without Squashing using depth-3 arithmetic circuits, FOCS 2011, 107-109.
DOI: 10.1109/focs.2011.94
Google Scholar
[16]
N. Howgrave-Graham. Approximate integer common divisors. CaLC'01, 2001, 2146: 51–66.
DOI: 10.1007/3-540-44670-2_6
Google Scholar
[17]
J. C. Lagarias. The computational complexity of simultaneous diophantine approximation problems. SIAM J. Comput., 1985, 14(1): 196–209.
DOI: 10.1137/0214016
Google Scholar
[18]
P. Q. Nguyen, J. Stern. The two faces of lattices in cryptology. Cryptography and Lattices, CaLC'01, 2001, 2146: 146–180.
DOI: 10.1007/3-540-44670-2_12
Google Scholar
[19]
D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.J. Cryptology, 1997, 10(4): 233–260.
DOI: 10.1007/s001459900030
Google Scholar
[20]
V. Vaikuntanathan. Computing blindfolded: New developments in Fully Homomorphic Encryption, FOCS 2011, 5-16.
DOI: 10.1109/focs.2011.98
Google Scholar
[21]
Z. Brakerski, C. Gentry and V. Vaikuntanathan, Fully Homomorphic Encryption without Bootstrapping. Cryptology ePrint Archive, Report 2011/277.
DOI: 10.1145/2090236.2090262
Google Scholar