Optimizing Experiment Performance by Realistic Sample Simulations

Article Preview

Abstract:

A simulation of realistic samples within a neutron scattering or imaging experiment has been created in order to support the accuracy, feasibility and analysis of residual stress measurements as well as the development of novel experimental methods and instrument components. Covering the influences of individual neutron instrument parameters, the simulation also assists in optimizing the experimental configuration towards precise measurements and effective usage of neutron beamtime.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] M. Boin and R. C. Wimpory, Upgrade Activities on the E3 Residual Stress Neutron Diffractometer, Mater. Sci. Forum 768-769 (2014) 31–35.

DOI: 10.4028/www.scientific.net/msf.768-769.31

Google Scholar

[2] C. Randau, U. Garbe and H. -G. Brokmeier, StressTextureCalculator : a software tool to extract texture, strain and microstructure information from area-detector measurements, J. Appl. Cryst. 44 (2011) 641–646.

DOI: 10.1107/s0021889811012064

Google Scholar

[3] K. Lefmann and K. Nielsen, McStas, a general software package for neutron ray-tracing simulations, Neutron News 10 (1999) 20–23.

DOI: 10.1080/10448639908233684

Google Scholar

[4] D. Wechsler, G. Zsigmond, F. Streffer and F. Mezei, VITESS: Virtual instrumentation tool for pulsed and continuous sources, Neutron News 11 (2000) 25–28.

DOI: 10.1080/10448630008233764

Google Scholar

[5] M. Boin, nxs: a program library for neutron cross section calculations, J. Appl. Cryst. 45 (2012) 603–607.

DOI: 10.1107/s0021889812016056

Google Scholar

[6] M. Boin, A. Hilger, N. Kardjilov, S. Y. Zhang, E. C. Oliver, J. A. James, C. Randau and R. C. Wimpory, Validation of Bragg edge experiments by Monte Carlo simulations towards quantitative texture analysis, J. Appl. Cryst. 44 (2011) 1040–1046.

DOI: 10.1107/s0021889811025970

Google Scholar

[7] G. A. Webster, Neutron Diffraction Measurements of Residual Stress in a Shrink-fit Ring and Plug. Teddington, UKVAMAS Report No. 38, National Physics Laboratory (2000).

Google Scholar

[8] M. Strobl, A. Hilger, M. Boin, N. Kardjilov, R. Wimpory, D. Clemens, M. Mühlbauer, B. Schillinger, T. Wilpert, C. Schulz et al., Time-of-flight neutron imaging at a continuous source: Proof of principle using a scintillator CCD imaging detector, Nucl. Instrum. Methods Phys. Res., Sect. A 651 (2011).

DOI: 10.1016/j.nima.2010.12.121

Google Scholar

[9] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand et al., Geant4 - a simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect. A 506 (2003) 250–303.

Google Scholar

[10] T. Kittelmann, I. Stefanescu, K. Kanaki, M. Boin, R. Hall-Wilton, and K. Zeitelhack, Geant4 based simulations for novel neutron detector development, in: 20th Int. Conf. on Computing in High Energy and Nuclear Physics (CHEP), Amsterdam, The Netherlands (2013).

DOI: 10.1088/1742-6596/513/2/022017

Google Scholar

[11] T. Kittelmann and M. Boin, NXSG4: Polycrystalline neutron scattering for Geant4, in preparation.

DOI: 10.1016/j.cpc.2014.11.009

Google Scholar

[12] E. C. Oliver and W. Kockelmann, Report on moderator choice for IMAT, ISIS, Didcot, UK, Unpublished report (2008).

Google Scholar

[13] J. Šaroun and J. Kulda, RESTRAX - a program for TAS resolution calculation and scan profile simulation, Physica B 234-236 (1997) 1102–1104.

DOI: 10.1016/s0921-4526(97)00037-9

Google Scholar

[14] J. Šaroun, J. R. Kornmeier, M. Hofmann, P. Mikula and M. Vrána, Analytical model for neutron diffraction peak shifts due to the surface effect, J. Appl. Cryst. 46 (2013) 628–638.

DOI: 10.1107/s0021889813008194

Google Scholar

[15] M. Farajian, T. Nitschke-Pagel, M. Boin, and R. C. Wimpory, Relaxation of welding residual stresses in tubular joints under multiaxial loading, in: The Tenth International Conference on Multiaxial Fatigue & Fracture (ICMFF10), Ritsumeikan University, Kyoto, Japan (2013).

DOI: 10.3139/105.110208

Google Scholar

[16] R. Woracek, D. Penumadu, N. Kardjilov, A. Hilger, M. Boin, J. Banhart and I. Manke, 3D Mapping of Crystallographic Phase Distribution using Energy-Selective Neutron Tomography, Adv. Mater. (2014), accepted manuscript.

DOI: 10.1002/adma.201470162

Google Scholar

[17] E. Cakmak, H. Choo, K. An and Y. Ren, Radial distribution of martensitic phase transformation in a metastable stainless steel under torsional deformation: A synchrotron X-ray diffraction study, Mater. Lett. 65 (2011) 3013–3015.

DOI: 10.1016/j.matlet.2011.06.065

Google Scholar