[1]
F. Vaz, L. Rebouta, Ph. Goudeau, J.P. Rivière, E. Schäffer, G. Kleer, M. Bodmann, Residual stress states in sputtered Ti1-xSixNy films, Thin Solid Films 402 (2002) 195-202.
DOI: 10.1016/s0040-6090(01)01672-8
Google Scholar
[2]
G. Dehm, D. Weiss, E. Arzt, In situ transmission electron microscopy study of thermal-stress-induced dislocations in a thin Cu film constrained by a Si substrate, Mat. Sci. Eng. A309–310 (2001) 468-472.
DOI: 10.1016/s0921-5093(00)01703-2
Google Scholar
[3]
G.G. Stoney, The tensions of metallic films deposited by electrolysis, Proc. R. Soc. Land. A82 (1909) 172-175.
Google Scholar
[4]
N. Guyot, Y. Harmand, A. Mézin, The role of the sample shape and size on the internal stress induced curvature of thin-film substrate systems, Int. J. Sol. Struct. 41 (2004) 5143-5154.
DOI: 10.1016/j.ijsolstr.2004.03.015
Google Scholar
[5]
A. Mézin, Coating internal stress measurement through the curvature method: a geometry - based criterion delimiting the relevance of Stoney's formula, Surf. Coat. Technol. 200 (2006) 5259-5267.
DOI: 10.1016/j.surfcoat.2005.06.018
Google Scholar
[6]
D. Ngo, X. Feng, Y. Huang, A.J. Rosakis, M.A. Brown, Thin film/substrate systems featuring arbitrary film thickness and misfit strain distributions. Part I: Analysis for obtaining film stress from non-local curvature information, Int. J. Sol. Struct. 44 (2007).
DOI: 10.1016/j.ijsolstr.2006.10.016
Google Scholar
[7]
C.B. Masters, N.J. Salamon, Geometrically nonlinear stress–deflection relations for thin film/substrate systems with a finite element comparison, ASME J. Appl. Mech. 61 (1994) 872-878.
DOI: 10.1115/1.2901570
Google Scholar
[8]
B. D Harper, C. -P. Whu, A geometrically nonlinear model for predicting the intrinsic film stress by the bending-plate method, Int. J. Solid Structure 26 (5-6) (2009) 511-525.
DOI: 10.1016/0020-7683(90)90025-q
Google Scholar
[9]
A. Fillon, G. Abadias, A. Michel, C. Jaouen, Stress and microstructure evolution during growth of magnetron-sputtered low-mobility metal films: Influence of the nucleation conditions, Thin Solid Films 519 (2010) 1655-1661.
DOI: 10.1016/j.tsf.2010.07.091
Google Scholar
[10]
J.J. Wortman, R.A. Evans, Young's Modulus, Shear Modulus and Poisson's Ratio in Silicon and Germanium, J. Appl. Phys. 36 (1) (1965) 153-156.
DOI: 10.1063/1.1713863
Google Scholar
[11]
D.R. França, A. Blouin, All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes, Meas. Sci. Technol. 15 (2004) 859-868.
DOI: 10.1088/0957-0233/15/5/011
Google Scholar
[12]
M. Bielawski, Residual stress control in TiN/Si coatings deposited by unbalanced magnetron sputtering, Surf. Coat. Technol. 200 (2006) 3987-3995.
DOI: 10.1016/j.surfcoat.2005.06.004
Google Scholar
[13]
L. Zhang, H. Yang, X. Pang, K. Gao, A. A. Volinsky, Microstructure, residual stress, and fracture of sputtered TiN films, Surf. Coat. Technol. 224 (2013) 120-125.
DOI: 10.1016/j.surfcoat.2013.03.009
Google Scholar
[14]
F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Rivière, K. Pischow, J. de Rijk, Structural, optical and mechanical properties of coloured TiNxOy thin films, Thin Solid Films 447-448 (2004) 449-454.
DOI: 10.1016/s0040-6090(03)01123-4
Google Scholar
[15]
F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Méndez, J.A. Mendes, E. Alves, Ph. Goudeau, J.P. Rivière, F. Ribeiro, I. Moutinho, K. Pischow, J. de Rijk, Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films, Surf. Coat. Technol. 191 (2005).
DOI: 10.1016/j.surfcoat.2004.01.033
Google Scholar
[16]
I.C. Noyan, J.B. Cohen, Residual stress: measurement by diffraction and interpretation, Springer-Verlag, New York Inc., (1987).
Google Scholar