Characterisation of In-Depth Stress State by Magnetic Barkhausen Noise on Machined Steel Acquiring Different Frequency Bands

Article Preview

Abstract:

The use of magnetic Barkhausen noise (MBN) signal to non-destructively characterize the in-depth residual stress state of machined steel was investigated. The effect of the frequency of the magnetic field applied and of analysing the resulting MBN signal in different frequency bands for an in-depth residual stress characterisation is discussed. The effect of the residual stress on each of the parameters derived from the MBN signal is analysed comparing with the result of the XRD method.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] S. M. Afazov, A. A. Becker, T. H. Hyde, Effects of Micro-Stresses from Machining and Shot-Peening Processes on Fatigue Life, Int J Adv Manuf Technol 51 (2010) 711-722.

DOI: 10.1007/s00170-010-2638-y

Google Scholar

[2] M. J. Leap, J. Rankin, J. Harrison, et al., Effects of Laser Peening on Fatigue Life in an Arrestment Hook Shank Application for Naval Aircraft, PHM 2011Montreal (Canada) (2011).

DOI: 10.1109/icphm.2011.6024336

Google Scholar

[3] S. Tiitto, On the influence of microstructure on magnetization transition in steel, Acta Pol. Scand. 119 (1977) 1-80.

Google Scholar

[4] J. B. Goodenough, A Theory of Domain Creation and Coercive Force in Polycrystalline Ferromagnetics, Phys. Rev. 95 (1954) 917-932.

DOI: 10.1103/physrev.95.917

Google Scholar

[5] V. Moorthy, B. A. Shaw, Magnetic Barkhausen Emission Measurements for Evaluation of Material Properties in Gears, NDT&E INT 23 (2008) 317-347.

DOI: 10.1080/10589750802275980

Google Scholar

[6] B. A. Shaw, T.R. Hyde, J. T. Evans, Detection of Grinding Damage in Hardened Gear Steels using Barkhausen Noise Analysis, ICBM 1 Hanover (Germany) (1998).

Google Scholar

[7] S. Santa-Aho, M. Vippola, T. Saarinen et al, Barkhausen Noise Characterisation during Elastic Bending and Tensile-Compression Loading of Case-Hardened and Tempered Samples, J. Mater. Sci. 47 (2012) 6420-6428.

DOI: 10.1007/s10853-012-6571-3

Google Scholar

[8] S. Desvaux, M. Duquennoy, J. Gualandri, M. Ouaftouh, M. Ourak, Evaluation of residual stress profiles using the Barkhausen noise effect to verify high performance aerospace bearings, NDT&E INT (2005) 20 9-24.

DOI: 10.1080/10589750412331315093

Google Scholar

[9] O. Kypris, I. C. Nlebedim, D. C. Jiles, Mapping Stress as a Function of Depth at the Surface of Steel Structures using a Frequency Dependent Magnetic Barkhausen Noise Technique, IEEE Trans. Magn. 48 (2012) 4428-4431.

DOI: 10.1109/tmag.2012.2196792

Google Scholar

[10] J. S. Ceurter, S. Chad, O. Roy, The Barkhausen noise inspection method for detecting grinding damage in gears, ICBM 2 Newcastle (UK) (1999).

Google Scholar

[11] T. Inaguma, H. Sakamoto, M. Hasegawa, Stress Dependence of Barkhausen Noise in Spheroidized Cementite Carbon Steel, IEEE Trans. Magn. 49 (2013) 1310-1317.

DOI: 10.1109/tmag.2012.2220856

Google Scholar

[12] V. Moorthy, B. A. Shaw, J. T. Evans, Evaluation of Tempering Induced Changes in the Hardness Profile of Case-Carburised EN36 Steel using Magnetic Barkhausen Noise Analysis, Trans. Magn. 36 (2003) 43-49.

DOI: 10.1016/s0963-8695(02)00070-1

Google Scholar

[13] Electrolytic Polishing, in: Metallography and Microstructures, ASM International, 1995, pp.48-56.

Google Scholar

[14] M.G. Moore, W.P. Evans, Mathematical correction for stress in removed layers in X-ray diffraction RS analysis, SAE Trans. 66 (1958) 340–345.

DOI: 10.4271/580035

Google Scholar

[15] M. Soto, A. Martínez-de Guerenu, K. Gurruchaga, F. Arizti, A completely configurable digital system for simultaneous measurements of hysteresis loops and Barkhausen noise, IEEE T Instrum Meas 58 (2009) 1746-1755.

DOI: 10.1109/tim.2009.2014510

Google Scholar

[16] D. C. Jiles, Introduction to magnetism and magnetic materials, second ed., Chapman & Hall, Boca Raton, (1998).

Google Scholar