Characterization of Micrometric and Localised Residual Stresses on Amorphous Materials Using Dispersion of Surface Acoustic Waves

Article Preview

Abstract:

For amorphous materials such as glass, the fragility of the material can be limited using surface reinforcement by chemical tempering. The principle of chemical tempering consists in forming a superficial compression layer on the surface by immersing the glass in a solution of molten potassium nitrate. In this study, dispersion of surface ultrasonic waves caused by the presence of residual surface stresses was studied. The thickness and the level of the stressed cortical zones were estimated using an inverse method.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] P. Fornara, A. Poncet, Modeling of local reduction in TiSi/sub2 and CoSi/sub2 growth near spacers in MOS technologies: influence of mechanical stress and main diffusing species, Int. Electron Devices Meeting Proceedings, San-Francisco, USA 8-11 December (1996).

DOI: 10.1109/iedm.1996.553125

Google Scholar

[2] O.S. Narayanaswamy, Stress and structural relaxation in tempering glass, Journal of the American Ceramic Society, 61 (1978) 146-152.

DOI: 10.1111/j.1151-2916.1978.tb09259.x

Google Scholar

[3] J. Deboucq, M. Duquennoy, M. Ouaftouh, F. Jenot, J. Carlier, M. Ourak, Development of interdigital transducer sensors for non-destructive characterization of thin films using high frequency Rayleigh waves, Review of Scientific Instruments, 82, 064905 (2011).

DOI: 10.1063/1.3600797

Google Scholar

[4] F.D. Murnaghan, Finite deformation of an elastic solid, Wiley & Sons edit., Inc. New York (1951) 1-140.

Google Scholar

[5] D.S. Hughes, J.L. Kelly, Second-order elastic deformation of solids, Phys. Review, 92, 5 (1953) 1145-1149.

DOI: 10.1103/physrev.92.1145

Google Scholar

[6] C. Truesdell, R. Toupin, The classical field theories, in Handbuch der Physik, S. Flügge, Ed. Vol. III/1, Springer-Verlag, Berlin and New York (1960) 1-632.

Google Scholar

[7] S.H.B. Bosher, D.J. Dunston, Effective elastic constants in nonlinear elasticity, Journal of Applied Physics, 97, 103505 (2005) 1-7.

DOI: 10.1063/1.1894586

Google Scholar

[8] M. Duquennoy, M. Ouaftouh, D. Devos, F. Jenot, M. Ourak, Effective elastic constants in acoustoelasticity, Applied Physics Letters, 92, 24, 244105 (2008) 1-3.

DOI: 10.1063/1.2945882

Google Scholar

[9] S. Karlsson, B. Jonson, The technology of chemical glass strengthening - a review, Glass technology-European Journal of Glass Science and Technology Part A, 51 (2010) 41-54.

Google Scholar

[10] G.W. Farnell and E.L. Adler, Elastic wave propagation in thin layers, Physical Acoustics edited by W.P. Mason and R.N. Thurston, Academic Press, New York, Vol. 9 (1972) 35-127.

DOI: 10.1016/b978-0-12-395670-5.50007-6

Google Scholar

[11] J.E. Lefebvre, V. Zhang, J. Gazalet, T. Gryba, Conceptual advantages and limitations of the Laguerre polynomial approach to analyze surface acoustic waves in semi-infinite substrates and multilayered structures, Journal of Applied Physics 83 (1998).

DOI: 10.1063/1.366697

Google Scholar

[12] M. Duquennoy, D. Devos, M. Ouaftouh, D. Lochegnies, E. Romero, Ultrasonic evaluation of residual stresses in flat glass tempering : comparing experimental investigation and numerical modelling, Journal of the Acoustical Society of America, 119, 6 (2006).

DOI: 10.1121/1.2197806

Google Scholar

[13] M. Duquennoy, M. Ouaftouh, J. Deboucq, J.E. Lefebvre, F. Jenot, M. Ourak, Influence of a superficial field of residual stress on the propagation of surface waves - Applied to the estimation of the depth of the superficial stressed zone, Appl. Phys. Lett., 101, 23 (2012).

DOI: 10.1063/1.4768434

Google Scholar

[14] M. Duquennoy, M. Ouaftouh, J. Deboucq, J.E. Lefebvre, F. Jenot, M. Ourak, Characterization of micrometric and superficial residual stresses using high frequency surface acoustic waves generated by interdigital transducers, J. Acoust. Soc. Am., 134, 6 (2013).

DOI: 10.1121/1.4826176

Google Scholar