[1]
A.S. Oddy, J.A. Goldak, J.M.J. McDill, Transformation plasticity and residual stresses in single-pass repair welds, J. Press. Vess. -T. ASME, 114 (1992) 33-38.
DOI: 10.1115/1.2929009
Google Scholar
[2]
J.A. Francis, H.K.D.H. Bhadeshia, P.J. Withers, Welding residual stresses in ferritic power plant steels. Mater. Sci. Tech., 23 (2007) 1009-1020.
DOI: 10.1179/174328407x213116
Google Scholar
[3]
D. Deng, H. Murakawa, Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel. Comp. Mater. Sci. 78 (2013) 55-62.
DOI: 10.1016/j.commatsci.2013.05.023
Google Scholar
[4]
G.W. Greenwood, R.H. Johnson, The deformation of metals under small stresses during phase transformations, P. R. Soc. A., 283 (1965) 403-422.
Google Scholar
[5]
C.L. Magee, Ph.D. thesis, Carnegie-Mellon University, (1966).
Google Scholar
[6]
J. -B. Leblond, G. Mottet, J. Devaux, J. -C. Devaux, Mathematical models of anisothermal phase transformations in steels, and predicted plastic behaviour, Mater. Sci. Tech., 1 (1985) 815-822.
DOI: 10.1179/mst.1985.1.10.815
Google Scholar
[7]
H. Dai, J.A. Francis, P.J. Withers, Prediction of residual stress distributions for single weld beads deposited on to SA508 steel including phase transformation effects, Mater. Sci. Tech., 26 (2010) 940-949.
DOI: 10.1179/026708309x12459430509454
Google Scholar
[8]
J. -S. Kim, S. -H. Lee, T. -E. Jin, Fatigue evaluation of dissimilar welds on nuclear components, Transactions of SMiRT 17, paper D03-2, (2003).
Google Scholar
[9]
C.J. Hamelin, O. Muránsky, P.J. Bendeich, K. Short, L. Edwards, Predicting solid-state phase transformations during welding of ferritic steels, Mater. Sci. Forum, 706-709 (2012) 1403-1408.
DOI: 10.4028/www.scientific.net/msf.706-709.1403
Google Scholar
[10]
M.V. Li, D.V. Niebuhr, L.L. Meekisho, D.G. Atteridge, A computational model for the prediction of steel hardenability, Metall. Mater. Trans. B, 29 (1998) 661-672.
DOI: 10.1007/s11663-998-0101-3
Google Scholar
[11]
C. Henwood, M. Bibby, J.A. Goldak, D. Watt, Coupled heat transfer – microstructure weld computations (Part B), Acta Metall. Mater., 36 (1988) 3037-3046.
DOI: 10.1016/0001-6160(88)90186-1
Google Scholar
[12]
L. Coon, D.F. Watt, Simulation of weld HAZ microstructural development, in: J. Too (Ed. ), Computer Modelling of Fabrication Processes and Constitutive Behaviour of Materials, CANMET, Ottawa (1987) 467-486.
Google Scholar
[13]
C. Ohms, R.V. Martins, O. Uca, A.G. Youtsos, P.J. Bouchard, M.C. Smith, M. Keavey, S.K. Bate, P. Gilles, R.C. Wimpory, L. Edwards, The European Network on Neutron Techniques Standardisation for Structural Integrity (NeT), Proc. ASME PVP Division Conf. (2008).
DOI: 10.1115/pvp2008-61913
Google Scholar
[14]
M.C. Smith, S.K. Bate, P.J. Bouchard, Simple benchmark problems for finite element weld residual stress simulation, Proc. ASME PVP Division Conf. (2013) paper PVP2013-98033.
DOI: 10.1115/pvp2013-98033
Google Scholar
[15]
P. Maynier, J. Dollet, P. Bastien, Prediction of microstructure via empirical formulae based on CCT diagrams, in: D.V. Doane, J.S. Kirkaldy (Eds. ), Hardenability Concepts with Applications to Steel, The Metallurgical Society of AIME (1978).
Google Scholar
[16]
H. Ikawa, S. Shin, H. Oshige, Y. Mekuchi, Austenite grain growth of steels during thermal cycles, Trans. Jpn. Weld. Soc. 8 (1977) 46-51.
Google Scholar
[17]
H. Pous-Romero, I. Lonardelli, D. Cogswell, H.K.D.H. Bhadeshia, Austenite grain growth in a nuclear pressure vessel steel, Mat. Sci. Eng. A-Struct. 567 (2013) 72-79.
DOI: 10.1016/j.msea.2013.01.005
Google Scholar