The Influence of Austenite Grain Size during Welding Simulations of Ferritic Steels

Article Preview

Abstract:

In recent years, considerable progress has been made in the simulation of ferritic steel welding processes. The successful validation of a single-pass autogenous TIG beam weld in SA508 Gr.3 Cl.1 steel has identified key simulation variables required for the accurate prediction of post-weld residual stress in ferritic weldments. The present work outlines a sensitivity study performed to examine the influence of austenite grain growth on predicted solid-state phase transformation kinetics and consequently, residual stress predictions.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] A.S. Oddy, J.A. Goldak, J.M.J. McDill, Transformation plasticity and residual stresses in single-pass repair welds, J. Press. Vess. -T. ASME, 114 (1992) 33-38.

DOI: 10.1115/1.2929009

Google Scholar

[2] J.A. Francis, H.K.D.H. Bhadeshia, P.J. Withers, Welding residual stresses in ferritic power plant steels. Mater. Sci. Tech., 23 (2007) 1009-1020.

DOI: 10.1179/174328407x213116

Google Scholar

[3] D. Deng, H. Murakawa, Influence of transformation induced plasticity on simulated results of welding residual stress in low temperature transformation steel. Comp. Mater. Sci. 78 (2013) 55-62.

DOI: 10.1016/j.commatsci.2013.05.023

Google Scholar

[4] G.W. Greenwood, R.H. Johnson, The deformation of metals under small stresses during phase transformations, P. R. Soc. A., 283 (1965) 403-422.

Google Scholar

[5] C.L. Magee, Ph.D. thesis, Carnegie-Mellon University, (1966).

Google Scholar

[6] J. -B. Leblond, G. Mottet, J. Devaux, J. -C. Devaux, Mathematical models of anisothermal phase transformations in steels, and predicted plastic behaviour, Mater. Sci. Tech., 1 (1985) 815-822.

DOI: 10.1179/mst.1985.1.10.815

Google Scholar

[7] H. Dai, J.A. Francis, P.J. Withers, Prediction of residual stress distributions for single weld beads deposited on to SA508 steel including phase transformation effects, Mater. Sci. Tech., 26 (2010) 940-949.

DOI: 10.1179/026708309x12459430509454

Google Scholar

[8] J. -S. Kim, S. -H. Lee, T. -E. Jin, Fatigue evaluation of dissimilar welds on nuclear components, Transactions of SMiRT 17, paper D03-2, (2003).

Google Scholar

[9] C.J. Hamelin, O. Muránsky, P.J. Bendeich, K. Short, L. Edwards, Predicting solid-state phase transformations during welding of ferritic steels, Mater. Sci. Forum, 706-709 (2012) 1403-1408.

DOI: 10.4028/www.scientific.net/msf.706-709.1403

Google Scholar

[10] M.V. Li, D.V. Niebuhr, L.L. Meekisho, D.G. Atteridge, A computational model for the prediction of steel hardenability, Metall. Mater. Trans. B, 29 (1998) 661-672.

DOI: 10.1007/s11663-998-0101-3

Google Scholar

[11] C. Henwood, M. Bibby, J.A. Goldak, D. Watt, Coupled heat transfer – microstructure weld computations (Part B), Acta Metall. Mater., 36 (1988) 3037-3046.

DOI: 10.1016/0001-6160(88)90186-1

Google Scholar

[12] L. Coon, D.F. Watt, Simulation of weld HAZ microstructural development, in: J. Too (Ed. ), Computer Modelling of Fabrication Processes and Constitutive Behaviour of Materials, CANMET, Ottawa (1987) 467-486.

Google Scholar

[13] C. Ohms, R.V. Martins, O. Uca, A.G. Youtsos, P.J. Bouchard, M.C. Smith, M. Keavey, S.K. Bate, P. Gilles, R.C. Wimpory, L. Edwards, The European Network on Neutron Techniques Standardisation for Structural Integrity (NeT), Proc. ASME PVP Division Conf. (2008).

DOI: 10.1115/pvp2008-61913

Google Scholar

[14] M.C. Smith, S.K. Bate, P.J. Bouchard, Simple benchmark problems for finite element weld residual stress simulation, Proc. ASME PVP Division Conf. (2013) paper PVP2013-98033.

DOI: 10.1115/pvp2013-98033

Google Scholar

[15] P. Maynier, J. Dollet, P. Bastien, Prediction of microstructure via empirical formulae based on CCT diagrams, in: D.V. Doane, J.S. Kirkaldy (Eds. ), Hardenability Concepts with Applications to Steel, The Metallurgical Society of AIME (1978).

Google Scholar

[16] H. Ikawa, S. Shin, H. Oshige, Y. Mekuchi, Austenite grain growth of steels during thermal cycles, Trans. Jpn. Weld. Soc. 8 (1977) 46-51.

Google Scholar

[17] H. Pous-Romero, I. Lonardelli, D. Cogswell, H.K.D.H. Bhadeshia, Austenite grain growth in a nuclear pressure vessel steel, Mat. Sci. Eng. A-Struct. 567 (2013) 72-79.

DOI: 10.1016/j.msea.2013.01.005

Google Scholar