Microstructure and Residual Stress Analysis of Explosion Cladded Inconel 625 and ASME SA516-70 Carbon Steel Bimetal Plates

Article Preview

Abstract:

In the present work the explosion welded joint produced between an Inconel 625 alloy and ASTM A516-70 carbon steel sheets was investigated. After welding, the cladded plates were submitted to stress relief annealing at 600 °C for 3 h. The cross section of the cladded plates was examined in both as welded and heat treated conditions by optical microscopy and scanning electron microscopy. The hardness profile across the cladded interface was determined and the residual stress state created as a consequence of the explosion welding process was determined by X-ray diffraction. The experimental results showed that the Inconel 625 alloy adhered well to the ASTM SA516-70 steel, demonstrating the viability of the explosion cladding process for producing bimetal plates of the mentioned alloys. In the as welded condition, metallography analysis indicated severe plastic deformation close to the cladded interface and a wavy morphology characteristic of high bond strength. Elevated tensile residual stresses were created as a result of the welding process and considerable stress relaxation was attained by application of the proposed heat treatment.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] D. R. Lesuer, C. K. Syn, O. D. Sherby, J. Wadsworth, J. J. Lewandowski, W. H. Hunt Jr, Mechanical behaviour of laminated metal composites, Int. Mat. Rev. 41 (1996) 169-197.

DOI: 10.1179/imr.1996.41.5.169

Google Scholar

[2] F. Findik, Recent developments in explosion welding, Mater. Design 32 (2011) 1081-1093.

Google Scholar

[3] S.A.A. Akbari-Mousavi, L.M. Barrett, S.T.S. Al-Hassani, Explosion welding of metal plates, J. Mater. Process. Tech. 202 (2008) 224-239.

DOI: 10.1016/j.jmatprotec.2007.09.028

Google Scholar

[4] R.A. Patterson, Fundamentals of Explosion Welding, in: D. L. Olson, T. A. Siewert, S. Liu, G. R. Edwards (Eds. ), ASM Handbook: Volume 6: Welding Brazing and Soldering, ASM International, Ohio, (1993).

DOI: 10.31399/asm.hb.v06.a0001351

Google Scholar

[5] S. A. Akbari-Mousavi, S. T. S. Al-Hassani, Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding, J. Mech. Phys. Solids 53 (2005) 2501-2528.

DOI: 10.1016/j.jmps.2005.06.001

Google Scholar

[6] A.S. Bahrani, T.J. Black, B. Crossland, The mechanics of wave formation in explosion welding, P. Roy. Soc. Lond. A Mat. 296, 1967, 224-239.

Google Scholar

[7] E. P. Pokataev, Y. P. Trykov, A. S. Kraev, Calculations and experimental determination of residual deflections of bimetallic components produced by explosion welding, Weld. Int. 13 (1999) 482-484.

DOI: 10.1080/09507119909447400

Google Scholar

[8] W. Yasheng, C. Hongneng, M. Ninxu, Measurement of residual stresses in a multi-layer explosion welded joint with successive milling technique, Strain 35 (2008) 7-10.

DOI: 10.1111/j.1475-1305.1999.tb01112.x

Google Scholar

[9] M. Sedighi, M. Honarpisheh, Experimental study of through-depth residual stress in explosion welded Al-Cu-Al multilayer, Mater. Design 37 (2012) 577-581.

DOI: 10.1016/j.matdes.2011.10.022

Google Scholar

[10] A. Karolczuk, K. Kluger, M. Kowalski, F. Zok, G. Robak, Residual stresses in steel-titanium composite manufactured by explosive welding, Mat. Sci. Forum 726 (2012) 125-132.

DOI: 10.4028/www.scientific.net/msf.726.125

Google Scholar

[11] Y. Taran, A. M. Balagurov, B. Sabirov, V. Davydov, A. M. Venter, Neutron diffraction investigation of residual stresses induced in niobium-steel bilayer pipe manufactured by explosive welding, Mat. Sci. Forum 768-769 (2014) 697-704.

DOI: 10.4028/www.scientific.net/msf.768-769.697

Google Scholar

[12] B. Mateša, D. Kozak, A. Stoić, I. Samardžić, The influence of heat treatment by annealing on clad plates residual stresses, Metalurgjia, 50 (2011) 227-230.

Google Scholar

[13] M. Honarpisheh, M. Asemabadi, M. Sedighi, Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer, Mater. Design 37 (2012) 122-127.

DOI: 10.1016/j.matdes.2011.12.045

Google Scholar

[14] F. Findik, R. Yilmaz, T. Somyurek, The effects of heat treatment on the microstructure and microhardness of explosive welding, Sci. Res. Essays 6 (2011) 4141-4151.

DOI: 10.5897/sre11.1018

Google Scholar

[15] B. López, I. Gutiérrez, J. J. Urcola, Study of the microstructure obtained after diffusion bonding Inconel 625 to low alloy steel by hot uniaxial pressing or hipping, Mater. Charact. 28 (1992) 49-59.

DOI: 10.1016/1044-5803(92)90028-g

Google Scholar

[16] H. R. Zareie Rajani, S. A. A. Akbari Mousavi, E. Madani Sani, E., Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates, Mater Design 43 (2012) 467-474.

DOI: 10.1016/j.matdes.2012.06.053

Google Scholar

[17] T. E. Abioye, J. Folkes, A. T. Clare, A parametric study of Inconel 625 wire laser deposition, J. Mater. Proc. Technol. 213 (2013) 2145-2151.

DOI: 10.1016/j.jmatprotec.2013.06.007

Google Scholar

[18] E. Macherauch, P. Müller, Das sin2ψ-Verfahren der röntgenoraphischen Spannungsmessung, Z. Angew. Physik, 13 (1961) 305-312.

Google Scholar

[19] A. Szecket, O. T. Inal, D. J. Vigueras, J. Rocco, A wavy versus straight interface in the explosive welding of aluminum to steel, J. Vac. Sci. Technol. 3 (1985) 2588-2593.

DOI: 10.1116/1.572839

Google Scholar

[20] R. Mendes, J.B. Ribeiro, A. Loureiro, Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration, Mater. Design 51 (2013) 182-192.

DOI: 10.1016/j.matdes.2013.03.069

Google Scholar

[21] M. R. Khanzadeh, S. A. A. Akbari Mousavi, A. Amadeh, G. H. Liaghat, Correlation between numerical finite element simulation and experiments for explosive cladding of nickel base super alloy on hot tool steel, Strain 48 (2012) 342-355.

DOI: 10.1111/j.1475-1305.2011.00828.x

Google Scholar