Effect of Preloading on Local Residual Stresses Induced by Laser Surface Hardening of Steel

Article Preview

Abstract:

The effect of defined preloading in the tensile and compressive regime on the near surface (residual) stress distributions, which result from laser surface hardening, is systematically studied in-situ, i.e. under the applied preload and after unloading. Samples made of steel grade AISI 4140 are defined surface hardened by means of a high-power diode laser (HPDL) system during uniaxial compressive elastic loading at-300 MPa as well as during uniaxial elastic tensile loading at 300 MPa using a custom designed 4-point-bending device, which can be mounted on an X-ray diffractometer. The results of X-ray stress analysis were compared to data derived for a sample state unaffected by any preload. Without external loading compressive residual stresses are induced inside the process zone that are balanced by tensile residual stresses outside this zone. The investigations show that external loading in the tensile and compressive regime has a strong impact on the resulting lateral residual stress distribution in loading direction. The results further indicate that undesirable tensile residual stresses outside the process zone can even be suppressed by using a defined appropriate preloading in the tensile regime.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J.C. Ion: Laser transformation hardening, Surface Engineering, 18 (2002) 14-31.

Google Scholar

[2] J. Domes: Die Ausbildung von Makroeigenspannungen beim Laserrandschichthärten und anderen Verfahren der Lasermaterialbearbeitung, Doctorate thesis, Universität Erlangen-Nürnberg, (1995).

Google Scholar

[3] V. Kostov, J. Gibmeier, A. Wanner: Laser surface hardening of steel: Effect of the process atmosphere on the microstructure and residual stress, Mater Sci. Forum, 772 (2014), 149-153.

DOI: 10.4028/www.scientific.net/msf.772.149

Google Scholar

[4] A. Wick: Randschichtzustand und Schwingfestigkeit von 42 CrMo 4 nach Kugelstrahlen unter Vorspannung und bei erhöhter Temperatur, Shaker Verlag, ISBN: 3-8265-6777-3, (1999).

Google Scholar

[5] H. W. Bergmann, E. Geissler: Laserhärten von Stählen, HTM, 46, (1991), 91-96.

DOI: 10.1515/htm-1991-460209

Google Scholar

[6] V. Kostov, J. Gibmeier, A. Wanner: Local residual stress distribution induced by repeated austenite-martensite transformation via laser surface hardening of steal AISI 4140, Mater. Sci. Forum 681, (2011), 321-326.

DOI: 10.4028/www.scientific.net/msf.681.321

Google Scholar

[7] E. Macherauch, P. Müller: Das sin²ψ-Verfahren der röntgenographischen Spannungsmessung, Z. angew. Physik, 13 (1961) 305-312.

Google Scholar

[8] DIN EN ISO 14577, Beuth Verlag, Berlin (2003).

Google Scholar

[9] V. Kostov, J. Gibmeier, F. Wilde, P. Staron, R. Rößler and A. Wanner: Fast in-situ phase and stress analyses during laser surface treatment – A synchrotron X-ray diffraction approach, Rev of Sci. Instrum., 83, 115101 (2012).

DOI: 10.1063/1.4764532

Google Scholar