[1]
Locquet J.N. Caractérisation métallurgiques et mécaniques de couches nitrurées, relation microstructure comportement. PhD thesis, ENSAM d'Aix-en-Provence, (1998).
Google Scholar
[2]
Basu A., Dutta Majumdar J., Alphonsa J., Mukherjee S., and Manna I. Corrosion resistance improvement of high carbon low alloy steel by plasma nitriding. Materials Letters, (2008).
DOI: 10.1016/j.matlet.2008.02.001
Google Scholar
[3]
Barrallier L, Barralis J. Proceedings of ICRS4 aéronautiques. Traitement Thermique, 341, 2002. Baltimore, (MD) USA: Society for Experimental Mechanics Inc., (1994).
Google Scholar
[4]
Mittemeijer EJ. Proceedings of the symposium sponsored by the heat treatment committee of the metallurgical society of AIME held at the 112th AIME annual meeting. New-York: Metallurgical Society of AIME, (1984).
DOI: 10.1007/bf03338169
Google Scholar
[5]
Barralis J., Castex L., and Chaize J.C. Influence des conditions de traitement sur la distribution des phases et des contraintes résiduelles dans les couches nitrurées. Mémoires et Études Scientifiques Revue de Métallurgie, (1986).
DOI: 10.1051/metal/199390050637
Google Scholar
[6]
Jegou S., Barrallier L., and Kubler R. Phase transformation and induced volume changes in a nitride ternary Fe-3%Cr-0. 345%C alloy. Acta Materiala, Volume 58 , issue 7, April 2010, pp.2666-2676.
DOI: 10.1016/j.actamat.2009.12.053
Google Scholar
[7]
Jegou S., Barrallier L., Kubler R., and Somers M. A. J. Evolution of residual stress in the diffusion zone of a model Fe-Cr-C alloy during nitriding. HTM Journal of Heat Treatment and Materials: Vol. 66, No. 3, pp.135-142.
DOI: 10.3139/105.110104
Google Scholar
[8]
Dulcy L., Torchane L., Gantois M. Mécanismes de formation et cinétique de croissances des couches nitrurées, Traitement thermique, n° 341, Août-septembre (2002), pp.19-26.
Google Scholar
[9]
Goldschmidt. H.J. Intersticial alloys. Butterworths and Co Ltd, (1967).
Google Scholar