Modelling Machining-Induced Residual Stresses after Laser-Assisted Turning of Steels

Article Preview

Abstract:

The current study examines the effects of laser assistance on machining-induced residual stresses (RS), using finite element modelling, during turning of steels. Dry orthogonal cutting was modelled, along with the pre-heating effect of the laser beam. AISI 4340 steel was used in the current work. Laser-assisted machining (LAM) resulted in higher surface tensile RS compared to conventional machining, with more pronounced effects at lower feed rates. This is basically because the assisted material experienced higher plastic deformation, due to thermal softening, as well as higher temperatures, which are both attributed to the pre-heating effect of LAM.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] H. Attia, S. Tavakoli, R. Vargas and V. Thomson, Laser-assisted high-speed finish turning of superalloy Inconel718 under dry conditions, CIRP Ann. Manuf. Technol. 59 (2010) 83–88.

DOI: 10.1016/j.cirp.2010.03.093

Google Scholar

[2] S. Rajagopal, D.J. Plankenhorn and V.L. Hill, Machining aerospace alloys with the aid of 15 kW laser, J. of App. Metalworking, 2-3 (1982) 170-184.

DOI: 10.1007/bf02834035

Google Scholar

[3] P. Dumitrescu, P. Koshy, J. Stenekes and M.A. Elbestawi, High-power diode laser assisted hard turning of AISI D2 tool steel, Int. J. Mach. Tool Manu. 46 (2006) 2009-(2016).

DOI: 10.1016/j.ijmachtools.2006.01.005

Google Scholar

[4] S. Sun, M. Brandt and M.S. Dargusch, Thermally enhanced machining of hard-to-machine materials - A review, Int. J. Mach. Tool Manu. 50 (2010) 663-680.

DOI: 10.1016/j.ijmachtools.2010.04.008

Google Scholar

[5] H. Ding and Y. C. Shin, Laser-assisted machining of hardened steel parts with surface integrity analysis, Int. J. Mach. Tool Manu. 50 (2010) 106-114.

DOI: 10.1016/j.ijmachtools.2009.09.001

Google Scholar

[6] J. Kenda, F. Pusavec and J. Kopac, Analysis of residual stresses in sustainable cryogenic machining of nickel based alloy - Inconel 718, J. Eng. Mater. Tech. 133 (2011) 1-7.

DOI: 10.1115/1.4004610

Google Scholar

[7] G. Germain, P. DalSanto and J.L. Lebrun, Comprehension of chip formation in laser assisted machining, Int. J. Mach. Tool Manu. 51 (2011) 230-238.

Google Scholar

[8] V. Navas, I. Arriola, O. Gonzalo and J. Leunda, Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining, Int. J. Mach. Tool Manu. 74 (2013) 19-28.

DOI: 10.1016/j.ijmachtools.2013.06.009

Google Scholar

[9] M. Anderson, R. Patwa and Y.C. Shin, Laser-assisted machining of Inconel 718 with an economic analysis, Int. J. Mach. Tool Manu. 46 (2006) 1879-1891.

DOI: 10.1016/j.ijmachtools.2005.11.005

Google Scholar

[10] T. B. Bouchnak, G. Germain, A. Morel and J.L. Lebrun, Influence of laser assistance on the machinability of the titanium alloy Ti555-3, Int. J. Adv. Manuf. Technol. 68 (2013) 2471-2481.

DOI: 10.1007/s00170-013-4855-7

Google Scholar

[11] B. Shi, H. Attia, R. Vargas and S. Tavakoli, Numerical and experimental investigation of laser-assisted machining of Inconel 718, Mach. Sci. Technol. 12 (2008) 498-513.

DOI: 10.1080/10910340802523314

Google Scholar

[12] M.N.A. Nasr, E-G. Ng and M.A. Elbestawi, A modified time-efficient FE approach for predicting machining-induced residual stresses, Finite Elem. Anal. Des. 44 (2008) 149-161.

DOI: 10.1016/j.finel.2007.11.005

Google Scholar

[13] M.N.A. Nasr, E-G. Ng and M.A. Elbestawi, Effects of strain hardening & initial yield strength on machining-induced residual stresses, J. Eng. Mater. Tech. 129 (2007) 567-579.

DOI: 10.1115/1.2772338

Google Scholar

[14] T. Mabrouki, J-F. Rigal, A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning, J. Mater. Process. Technol. 176 (2006) 214-221.

DOI: 10.1016/j.jmatprotec.2006.03.159

Google Scholar

[15] M.N.A. Nasr, E-G. Ng and M.A. Elbestawi, Effects of workpiece thermal properties on machining-induced residual stresses – thermal softening and conductivity, Proc. Inst. Mech. Eng., B J. Eng. Manuf. 221 (2007) 1387-1400.

DOI: 10.1243/09544054jem856

Google Scholar

[16] C.R. Liu and Y.B. Guo, Finite Element Analysis of the Effect of Sequential Cuts and Tool-Chip Friction on Residual Stresses in a Machined Layer", Int. J. Mech. Sc. 42 (2000) 1069-1086.

DOI: 10.1016/s0020-7403(99)00042-9

Google Scholar

[17] H. Schmidt and J. Hattel, A Local Model for the Thermomechanical Conditions in Friction Stir Welding", Modell. Simul. Mater. Sci. Eng. 13 - 1 (2005) 77-93.

DOI: 10.1088/0965-0393/13/1/006

Google Scholar

[18] C. Shet and X. Deng, Residual Stresses and Strains in Orthogonal Metal Cutting, Int. J. Mach. Tool Manu. 43 (2003) 573-587.

DOI: 10.1016/s0890-6955(03)00018-x

Google Scholar

[19] T. I El-Wardany, H.A. Kishawy and M.A. Elbestawi, Surface Integrity of Die Materials in High Speed Hard Machining. Part 2: Micro-hardness Variations and Residual Stresses, J. Eng. Mater. Tech. 122 - 4 (2000) 632-641.

DOI: 10.1115/1.1286557

Google Scholar