Modeling of Stress and Strain Fields Induced during the Smart-Cut Process on Silicone - Influence of Different Couplings for Diffusion of Hydrogen at a Microscopic Scale

Article Preview

Abstract:

The Smart-Cut technology consists in the increasing of pressure imposed by the diffusion of hydrogen ions in the silicon substrate leading to a wafer splitting. In the present work, we studied the evolution of the stress field in the crystalline lattice of silicon, the diffusion of hydrogen ions as well as the growth and coalescence of cavities. Meanwhile, we test several models and simulate these phenomena by a numerical approach, in order to compare its results to experimental observations.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] P. Nguyen, I. Cayrefourcq, K.K. Bourdelle, A. Boussagol, E. Guiot, N. Ben Mohamed, N. Sousbie, T. Akatsu, Journal of Applied Physics 97 (2005).

DOI: 10.1063/1.1865318

Google Scholar

[2] Y. Ma, Y. L. Huang, R. Job, W. R. Fahrner, Physical Review B 71 (2005).

Google Scholar

[3] F.A. Reboredo, M. Ferconi, S.T. Pantelides, Physical Review Letters 82 (1999) 4870-4873.

Google Scholar

[4] M. Gianpietro, Molecular dynamics simulations of Smart-Cut cleavage of silicon devices, Department of Physics, King's College London (2005).

Google Scholar

[5] J. Weber, T. Fischer, E. Hieckmann, M. Hiller, E.V. Lavrov, Journal of Physics: Condensed Matter 17 (2005).

Google Scholar

[6] B. Ghyselen, J.M. Hartmann, T. Ernst, C. Aulnette, B. Osternaud, Y. Bogumilowicz, A. Abbadie, P. Besson, O. Rayssac, A. Tiberj, N. Daval, I. Cayrefourq, F. Fournel, H. Moriceau, C. Di Nardo, F. Andrieu, V. Paillard, M. Cabié, L. Vincent, E. Snoeck, F. Cristiano, A. Rocher, A. Ponchet, A. Claverie, P. Boucaud, M.N. Semeria, D. Bensahel, N. Kernevez, C. Mazure, Solid-State Electronics 48 (2004).

DOI: 10.1016/j.sse.2004.01.011

Google Scholar

[7] S. Nakao, T. Ando, M. Shikida, K. Sato, Engineering (2005) 1961-(1964).

Google Scholar

[8] K. Saanouni, P. Lestriez, Steel Research International 80 (2009) 645-657.

Google Scholar

[9] Y.P. Varshni, Physical Review B 11 (1970).

Google Scholar

[10] J.J. Wortman, R.A. Evans, Journal of Applied Physics 36 (1965) 153-156.

Google Scholar

[11] M.L. Nandanpawar, S. Rajagopalan, Journal of Applied Physics 49 (1978).

Google Scholar

[12] X.Q. Feng, Y. Huang, International Journal of Solids and Structures 41 (2004) 4299-4320.

Google Scholar

[13] P.W. Voorhees, Journal of Statistical Physics 38 (1985) 231-252.

Google Scholar

[14] J.H. Yao, K.R. Elder, H. Guo, M. Grant, Physical Review B (1993).

Google Scholar

[15] D. Fan, S.P. Chen, L.Q. Chen, P.W. Voorhees, Acta Materialia 50 (2002) 1895-(1907).

Google Scholar

[16] R. Bisson, phD Thesis, Ecole Polytechnique de Palaiseau (2004).

Google Scholar

[17] R.N. Hall, IEEE Transactions on Nuclear Science 31 (1984) 320-325.

Google Scholar

[18] S. Personnic, K.K. Bourdelle, F. Letertre, A. Tauzin, N. Cherkashin, A. Claverie, R. Fortunier, H. Klocker, Journal of Applied Physics 103 (2008).

DOI: 10.1063/1.2829807

Google Scholar