Effect of Interlamellar Spacing on the Monotonic Behavior of C70 Pearlitic Steel

Article Preview

Abstract:

The effect of interlamellar spacing on monotonic behavior of C70 pearlitic steel was investigated. Tensile tests under X-ray diffraction coupled with self-consistent model have been used to identify the role of interlamellar spacing on the ferrite plasticity parameters and residual stresses. It has been established that yielding of pearlite is controlled by ferrite critical shear stresses ( τc 0α) which is higher for the smaller interlamellar spacing. Moreover, the residual stress level in ferrite is higher for the largest interlamellar spacing under the same imposed total strain. Lattice strains, measured by synchrotron X-ray diffraction, show an elastic and plastic anisotropy of ferrite crystallites and high stresses in cementite which confirm the self-consistent model calculation. Keywords: Pearlitic steel, X-ray diffraction, Synchrotron radiation, Self-consistent model, Critical shear stress, Lattice strains.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] G. Langford, Metall. Trans. A, 8A (1977) 861-875.

Google Scholar

[2] M. Belassel, in, ENSAM Paris, (1994).

Google Scholar

[3] K. Inal, J. L. Lebrun, M. Belassel, Metall. Mater. Trans., 35A (2004) 2361- 2369.

Google Scholar

[4] M. L. Young, J. D. Almer, M. R. Daymond, D. R. Haeffner, D. C. Dunand, Acta Mater., 55 (2007) 1999–(2011).

Google Scholar

[5] M.R. Daymond, H.G. Priesmeyer, Acta Materialia, 50 (2002) 1613-1626.

Google Scholar

[6] Y. Tomota, P. Lukas, D. Neov, S. Harjo, Y. R. Abe, Acta Mater., 51 (2003) 805-817.

Google Scholar

[7] J.M. Hyzak, I. Bernstein, Metall. Trans. A, 7A (1976) 1218-1224.

Google Scholar

[8] T. Shinozaki, S. Morooka, T. Suzuki, Y. Tomota, T. Kamiyama, in: The 3rd International Conference on Advanced Structural Steels Gyeongju, Korea, (2006).

Google Scholar

[9] R.A. Winholtz, J. B Cohen, Metall. Trans, 23 A (1992) 341-354.

Google Scholar

[10] C. Schmitt, P. Lipinski, M. Berveiller, I. J. Plasticity., 13 No 3 (1997) 183-199.

Google Scholar

[11] X. Long, X. Peng, W. Pi, Acta Mech Sin, 24 (2008) 91–99.

Google Scholar

[12] P. Lipinski, M. Berveiller, I. J. Plasticity., 5 (1989) 149-152.

Google Scholar

[13] A. Baczmański, P. Zattarin, P. Lipiński, K. Wierzbanowski, Arch. Metall., 45 (2000) 163-184.

Google Scholar

[14] A. Baczmanski, C. Braham, Acta Mater., 52 (2004) 1133–1142.

Google Scholar

[15] E. C. Oliver, M. R. Daymond, P. J. Withers, Acta Materialia, 52 (2004) 1937–(1951).

Google Scholar

[16] H. Ledbetter, Materials Science and Engineering, A 527 (2010) 2657–2661.

Google Scholar