Microstrain and Residual Stress in Thin-Films Made from Silver Nanoparticles Deposited by Inkjet-Printing Technology

Article Preview

Abstract:

Colloidal suspensions of nanoparticles are increasingly employed in the fabrication process of electronic devices using inkjet-printing technology and a consecutive thermal treatment. The evolution of internal stresses during the conversion of silver nanoparticle-based ink into a metallic thin-film by a thermal sintering process has been investigated by in-situ XRD using the sin2ψ method. Despite the CTE mismatch at the film/substrate interface, the residual stress in silver films (below 70 MPa) remains lower than in conventional PVD thin-films, as a result of the remaining porosity. A Warren-Averbach analysis further showed that the crystallite growth is associated with a minimization of the twin fault density and the elastic microstrain energy above 150°C. A stabilization of the microstructure and internal stress is observed above 300°C. Inkjet-printing technology thus appears as a good alternative to conventional metallization techniques and offers significant opportunities asset for interconnect and electronic packaging.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] R. Vayrette, C. Rivero, S. Blayac, K. Inal, Mater. Sci. Forum 681 (2011) 139.

Google Scholar

[2] M. Gelfi, E. Bontempi, R. Roberti, L. Armelao, L.E. Depero, Thin Solid Films 450 (2004) 143.

DOI: 10.1016/j.tsf.2003.10.059

Google Scholar

[3] T. Wermelinger, S.A. Scott, M.G. Lagally, et al., AIP Conf. Proc. 1267 (2010) 776.

Google Scholar

[4] R. Parashkov, E. Becker, T. Riedl, H. -H. Johannes, W. Kowalsky, Proc. IEEE 93 (2005) 1321.

DOI: 10.1109/jproc.2005.850304

Google Scholar

[5] J.B. Szczech, C.M. Megaridis, et al., IEEE Trans. Electron. Packag. Manuf. 25 (2002) 26.

Google Scholar

[6] V. Pekkanen, M. Mäntysalo, K. Kaija, et al., Microelectron. Eng. 87 (2010) 2382.

Google Scholar

[7] J. -W. Kim, Y. -C. Lee, J. -M. Kim, W. Nah, et al., Microelectron. Eng. 87 (2010) 379.

Google Scholar

[8] E. Roduner, Chem. Soc. Rev. 35 (2006) 583.

Google Scholar

[9] J.T. Lue, in: H.S. Nalwa (Ed. ), Encycl. Nanosci. Nanotechnol., ASP, 2007, p.1–46.

Google Scholar

[10] W. Luo, W. Hu, S. Xiao, J. Phys. Chem. C 112 (2008) 2359.

Google Scholar

[11] C. Kirchlechner, K.J. Martinschitz, R. Daniel, et al., Thin Solid Films 518 (2010) (2090).

Google Scholar

[12] R. Resel, E. Tamas, B. Sonderegger, P. Hofbauer, J. Keckes, J. Appl. Crystallogr. 36 (2003) 80.

Google Scholar

[13] B.E. Warren, B.L. Averbach, J. Appl. Phys. 21 (1950) 595.

Google Scholar

[14] A. Yakoub, M. Saadaoui, R. Cauchois, J. -M. Li, et al., in: Mater. Res. Soc. Fall Meet., (2011).

Google Scholar

[15] T.C. Hodge, et al., IEEE Trans. Components, Packag. Manuf. Technol. A 20 (1997) 241.

Google Scholar

[16] J.R. Greer, Nat. Mater. 12 (2013) 689.

Google Scholar

[17] E. Eiper, J. Keckes, K.J. Martinschitz, I. Zizak, M. Cabié, et al., Acta Mater. 55 (2007) (1941).

DOI: 10.1016/j.actamat.2006.10.052

Google Scholar

[18] S. Seel, J. Hoyt, E. Webb, J. Zimmerman, Phys. Rev. B 73 (2006) 245402.

Google Scholar

[19] D. Oleszak, P.H. Shingu, J. Appl. Phys. 79 (1996) 2975.

Google Scholar

[20] T.P. Martin, Phys. Rep. 273 (1996) 199.

Google Scholar

[21] B. Ingham, T.H. Lim, C.J. Dotzler, A. Henning, et al., Chem. Mater. 23 (2011) 3312.

Google Scholar

[22] W. Vogel, J. Bradley, O. Vollmer, I. Abraham, J. Phys. Chem. B 102 (1998) 10853.

Google Scholar

[23] M.A. Asoro, D. Kovar, Y. Shao-Horn, L.F. Allard, et al., Nanotechnology 21 (2010) 025701.

Google Scholar

[24] R. Cauchois, M. Saadaoui, A. Yakoub, K. Inal, B. Dubois, et al., J. Mater. Sci. (2012).

Google Scholar