Relationship between Diamond Particle Size and Thermal Conductivity of Cu-Diamond Composites

Article Preview

Abstract:

Diamond-copper composites were fabricated by ultrahigh pressure sintering (UHPS) technology. The influence of diamond particle size on the microstructure,relative density and thermal conductivity of composites were investigated. The results indicated that the high relative density of more than 99% diamond-copper composite can be prepared by UHPS method. The composite thermal conductivity dramatically increased with increasing diamond particle size and the highest value of 675W/(m·K) were obtained when using 200μm diamond,which is much higher than those of traditional electronic packing materials. The Cu-diamond composite could fulfill the requirement of heat removal of the high-power electronic packaging devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

415-418

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Hanada, K. Matsuzaki and T. Sano: Journal of Materials Processing Technology Vol. 153-154 (2004) pp.514-518.

Google Scholar

[2] K. Chu, Z. F. Liu and C. C. Jia: Journal of Alloys and Compounds Vol. 490 (2010) pp.453-458.

Google Scholar

[3] Y.Y. Han, H. GUO and F.Z. YING: Rare Metals, Vol. 31 (2012) p.58.

Google Scholar

[4] Th. Schubert, B. Trindade and T. Weiβgärber: Mater. Sci. Eng. A Vol. 475 (2008) p.39.

Google Scholar

[5] X.B. He, X.H. Qu and S.B. Ren: Technological Sciences Vol. 52 (2009). P. 238.

Google Scholar

[6] K. Yoshida, H. Morigami: Microelectronics. Reliability Vol. 44 (2004) pp.303-308.

Google Scholar

[7] P.W. Ruch, O. Beffort, S. Kleiner, L. Weber and P.J. Uggowitzer: Compos. Sci. Technol Vol. 66 (2006) p.2677–2685.

Google Scholar

[8] L. Weber, R. Tavangar: Scr. Mater. Vol. 57 (2007) pp.988-891.

Google Scholar

[9] A.M. Abyzov, S.V. Kidalov and F. M: Appl. Therm. Eng Vol. 48 (2012) pp.72-80.

Google Scholar

[10] H Chen, C. C Jia and S. J. Li: International Journal of Minerals, Metallurgy and Materials, Vol. 19 (2012) pp.364-371.

Google Scholar

[11] T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. Weißgarber and B. Kieback: Scr. Mater Vol. 58 (2008) pp.263-266.

Google Scholar

[12] Y. Zhang, H.L. Zhang, J.H. Wu and X.T. Wang: Scr. Mater. Vol. 65 (2011) pp.1097-1100.

Google Scholar

[13] L. Weber, R. Tavangar: Scripta Mater Vol. 57 (2007), p.988.

Google Scholar

[14] Y. Xia, Y.Q. Song, C.G. Lin, S. Cui, and Z.Z. Fang: Trans. Nonferrous Met. Soc. China Vol. 19 (2009) p.1161.

Google Scholar