Simple and Eco-Friendly Hydrothermal Synthesis of Luminescent Carbon Nanoparticles for H2O2 Detection

Article Preview

Abstract:

The fluorescent carbon nanoparticles (average diameter: 10~50 nm) are prepared by using a simple and eco-friendly hydrothermal process, and show a stronge blue emission. The fluorescence of the water soluble carbon nanoparticles could be quenched effectively by H2O2 without obvious shift in maximum photoluminescence emission wavelength, which can be used for the detection of H2O2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

791-794

Citation:

Online since:

August 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Huang, J. Wang, H. Liu, T. Lan, J. Ren, Talanta 106 (2013) 79-84.

Google Scholar

[2] K. Fang, Y. Yang, L. Fu, H. Zheng, J. Yuan, L. Niu, Sensors and Actuators B 191 (2014) 401-407.

Google Scholar

[3] W. Chen, S. Cai, Q.Q. Ren, W. Wen, Y.D. Zhao, Analyst 137 (2012) 49-58.

Google Scholar

[4] J. Jia, B. Wang, A. Wu, G. Cheng, Z. Li, S. Dong, Anal. Chem. 74 (2002) 2217-2223.

Google Scholar

[5] X. Li, Y. Liu, A. Zhu, Y. Luo, Z. Deng, Y. Tian, Anal. Chem. 82 (2010) 6512-6518.

Google Scholar

[6] D. Srikun, A.E. Albers, C.I. Nam, A.T. Iavarone, C.J. Chang, J. Am. Chem. Soc. 132 (2010) 4455-4465.

Google Scholar

[7] X.W. Meng, J.F. Wei, X.L. Ren, J. Ren, F.Q. Tang, Biosensors and Bioelectronics, 47 (2013) 402-407.

Google Scholar

[8] D. Song, J.M. Lim, C. Somin, S.J. Park, J. Cho, D. Kang, S.G. Rhee, Y. You, W. Nam, Chem. Commun., 48(2012) 5449-5451.

Google Scholar

[9] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng , Y. Hou, L. Qu, Adv. Mater. 23 (2011) 776-780.

Google Scholar

[10] J. Zhou, C. Booker, R. Li, X. Zhou, T.K. Sham, X. Sun, Z. Ding , J. Am. Chem. Soc. 129 (2007)744-745.

Google Scholar

[11] Y. Liu, C. Liu, Z. Zhang, Journal of Colloid and Interface Science 356 (2011) 416-421.

Google Scholar

[12] Y. L, Y. Zhao, H. Cheng, Y, Hu, G, Shi, L, Dai, L. Qu, J. Am. Chem. Soc. 134 (2012) 15-18.

Google Scholar

[13] Y. Mao, Y. Bao, D. Han, F. Li, L. Niu, Biosensors and Bioelectronics 38 (2012) 55-60.

Google Scholar

[14] L. Fan, Y. Hu, X. Wang, L. Zhang, F. Li, D. Han, Z. Li, Q. Zhang, Z. Wang, L. Niu, Talanta, 101 (2012) 192-197.

Google Scholar

[15] Y. Mao, Y. Bao, L. Yan, G. Li, F. Li, D. Han, X. Zhang, L. Niu, RSC Adv, 3 (2013) 5475-5482.

Google Scholar

[16] Z. Qian, J. Zhou, J. Chen, C. Wang, C. Chen, H. Feng, J. Mater. Chem., 21(2011) 17635-17637.

Google Scholar

[17] J. Wei, L. Qiang, J. Ren, X. Ren, F. Tang, X. Meng, Anal. Methods, 6 (2014) 1922-(1927).

Google Scholar

[18] Z.S. Qian, J.J. Ma, X.Y. Shan, H. Feng, L.X. Shao, J.R. Chen, Chemistry A Europnal Journal, 20 (2014) 2254-2263.

Google Scholar

[19] J.M. Nedelec, D. Avignant, R. Mahiou, Chem. Mater, 14 (2002) 651-655.

Google Scholar

[20] D.Y. Pan, J.C. Zhang, Z. Li, C. Wu, X.M. Yan, M.H. Wu, Chem. Commun, 46 (2010)3681-3683.

Google Scholar

[21] D.Y. Pan, J.C. Zhang, Z. Li, C. Wu, Adv. Mater, 22 (2010) 734-738.

Google Scholar

[22] C. Xu, X. Wang, J.W. Zhu, J Phys Chem C, 112(2008)19841-19845.

Google Scholar

[23] G. Eda, Y. Lin, C. Mattevi, H. Yamaguchi, H. Chen, I.S. Chen, C. Chen, M. Chhowalla, Adv. Mater. 22 (2010) 505-509.

DOI: 10.1002/adma.200901996

Google Scholar

[24] H. Wang, H. Tian, S. Wang, W. Zheng, Y. Liu, Materials Letters, 78 (2012) 170-173.

Google Scholar