Analysis of City Traffic Characteristics from GPS Data

Article Preview

Abstract:

With the city urbanization and increase in the number of motor vehicle, Study of the city traffic pattern from taxi GPS data has become the research hotspot. This paper analyzes two city taxi GPS data; calculate the peak of get-on/off amount, the time span distribution of time dimension. Radius of gyration of spatial dimension. Then analyze the traffic characteristics through these temporal characteristic parameters.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

1545-1548

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Phithakkitnukoon, T. Horanont, G. Di Lorenzo, R. Shibasaki, and C. Ratti: Activity-aware map: Identifying human daily activity pattern using mobile phone data, in Proceedings of the 10th International Conference on Pattern Recognition. IEEE, (2010).

DOI: 10.1007/978-3-642-14715-9_3

Google Scholar

[2] F. Calabrese, F. Pereira, G. Di Lorenzo, L. Liu, and C. Ratti: The geography of taste: analyzing cell-phone mobility and social events, in Proceedings of the 8th International Conference on Pervasive Comput- ing. Springer, (2010).

DOI: 10.1007/978-3-642-12654-3_2

Google Scholar

[3] F. Calabrese, J. Reades, and C. Ratti: Eigenplaces: segmenting space through digital signatures, Pervasive Computing, IEEE, vol. 9 (2009), No. 1, p.78–84.

DOI: 10.1109/mprv.2009.62

Google Scholar

[4] R. Mahnke, J. Kaupuzs, and I. Lubashevsky: Probabilistic description of traffic flow, Physics Reports, Vol. 408 (2005), No. 1-2, p.1–130, (2005).

DOI: 10.1016/j.physrep.2004.12.001

Google Scholar

[5] H. Yang, M. Ye, W. Tang, and S. Wong: Regulating taxi services in the presence of congestion externality, Transportation Research Part A: Policy and Practice, Vol. 39, No. 1, p.17–40, (2005).

DOI: 10.1016/j.tra.2004.05.004

Google Scholar

[6] D. Chowdhury, L. Santen, and A. Schadschneider: Statistical physics of vehicular traffic and some related systems, Physics Reports, Vol. 329 (2000), No. 4-6, p.199–329.

DOI: 10.1016/s0370-1573(99)00117-9

Google Scholar

[7] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani: An energy-efficient mobile recommender system, in Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, (2010).

DOI: 10.1145/1835804.1835918

Google Scholar

[8] J. Froehlich, J. Neumann, and N. Oliver: Sensing and predicting the pulse of the city through shared bicycling, in Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09), (2009).

Google Scholar

[9] A. Kaltenbrunner, R. Meza, J. Grivolla, J. Codina, and R. Banchs: Urban cycles and mobility patterns–Exploring and predicting trends in a bicycle-based public transport system, Pervasive and Mobile Computing, (2010).

DOI: 10.1016/j.pmcj.2010.07.002

Google Scholar

[10] Guande Qi, Xiaolong Li, Shijian Li, Gang Pan and Zonghui Wang: Measuring Social Functions of City Regions from Large-scale Taxi Behaviors, IEEE, (2011).

DOI: 10.1109/percomw.2011.5766912

Google Scholar