2D DOA Estimation Using Sparse Representation of Higher-Order Power of Covariance Matrix

Article Preview

Abstract:

A novel two-dimensional (2D) direction-of-arrival (DOA) estimation algorithm utilizing a sparse signal representation of higher-order power of covariance matrix is proposed. Through applying the higher-order power of covariance matrix to construct a new sparse decomposition vector, this algorithm avoids the estimation of incident signal number and eigenvalue decomposition. And the hierarchical granularity-dictionary is studied, which forms the over-complete dictionary adaptively in the light of source signals’ distribution. Compared with MUSIC and L1-SVD, this algorithm not only provides a better 2D DOA performance but also possesses the capability of coherent signals estimation. Theoretical analysis and simulation results demonstrate the validity and robust of the proposed algorithm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

779-783

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Errasti-Alcala, R. Fernandez-Recio. Meta-Heuristic Approach for Single-Snapshot 2D-DOA and Frequency Estimation: Array Topologies and Performance Analysis [J]. IEEE Trans. on Antennas and Propagation, 2013, 55(1): 222-238.

DOI: 10.1109/map.2013.6474534

Google Scholar

[2] I. Liskind, M. Wax. Maximum Likelihood Kocalization of Multiple Sources by Alternating Projection [J]. IEEE Trans. on Acoustics, Speech and Signal Processing, 1988, 36(10): 1553-1559.

DOI: 10.1109/29.7543

Google Scholar

[3] Roy R K T. ESPRIT-estimation of Signal Parameters via Rotational Invariance Techniques [J]. IEEE Trans. on Acoustics, Speech and Signal Processing, 1989, 37(7): 984-995.

DOI: 10.1109/29.32276

Google Scholar

[4] R. G. Baraniuk, V. Cevher and M. F. Duarte. Model-Based Compressive Sensing [J]. IEEE Trans. on Information Theory, Apr 2010, 56(4): 1982-(2001).

DOI: 10.1109/tit.2010.2040894

Google Scholar

[5] M. Ahmad Rateb, Sharifah Kamilah SyedYusof. Performance Analysis of Compressed Sensing Given Insufficient Random Measurements [J]. ETRI Journal, 2013, 35(2): 200-206.

DOI: 10.4218/etrij.13.0112.0312

Google Scholar

[6] T. Guha, R. K. Ward. Learning Sparse Representations for Human Action Recognition [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34(8): 1576-1588.

DOI: 10.1109/tpami.2011.253

Google Scholar

[7] G. Quer, R. Masiero and G. Pillonetto. Sensing, Compression, and Recovery for WSNs: Sparse Signal Modeling and Monitoring Framework [J]. IEEE Trans. on Wireless Communications, Oct 2012, 11(10): 3447-3461.

DOI: 10.1109/twc.2012.081612.110612

Google Scholar

[8] G. Shenghua, I. W. Tsang and C. Liangtien. Sparse Representation with Kernels [J]. IEEE Trans. on Image Processing, 2013, 22(2): 423-434.

DOI: 10.1109/tip.2012.2215620

Google Scholar

[9] Z. Jimeng, M. Kaveh. Sparse Spatial Spectral Estimation: A Covariance Fitting Algorithm, Performance and Regularization [J]. IEEE Trans. on Signal Processing, June 2013, 61(11): 2767-2777.

DOI: 10.1109/tsp.2013.2256903

Google Scholar

[10] D. L. Donoho, X. Huo. Uncertainty Principles and Ideal Atomic Decompositions [J]. IEEE Trans. on Information Theory, 2001, 47(7): 2845-2862.

DOI: 10.1109/18.959265

Google Scholar

[11] Y. H. Park, S. Pasricha and F. J. Kurdahi. A Multi-Granularity Power Modeling Methodology for Embedded Processors [J]. IEEE Trans. on Very Scale Integration Systems, 2011, 19(4): 668-681.

DOI: 10.1109/tvlsi.2009.2039153

Google Scholar