[1]
Yu, Hui, and Guo He Huang. Isolation and characterization of biosurfactant-and bioemulsifier-producing bacteria from petroleum contaminated sites in Western Canada, Soil and Sediment Contamination 20.3 (2011) 274-288.
DOI: 10.1080/15320383.2011.560981
Google Scholar
[2]
Banat, Ibrahim M., Andrea Franzetti, Isabella Gandolfi, Giuseppina Bestetti, Maria G. Martinotti, Letizia Fracchia, Thomas J. Smyth, and Roger Marchant. Microbial biosurfactants production, applications and future potential, Applied microbiology and biotechnology 87, no. 2 (2010) 427-444.
DOI: 10.1007/s00253-010-2589-0
Google Scholar
[3]
Gudiña, Eduardo J., Ana I. Rodrigues, Victor de Freitas, Zélia Azevedo, José A. Teixeira, and Lígia R. Rodrigues. Valorization of agro-industrial wastes towards the production of rhamnolipids, Bioresource technology 212 (2016) 144-150.
DOI: 10.1016/j.biortech.2016.04.027
Google Scholar
[4]
Reis, R.S., G.J. Pacheco, A.G. Pereira, and D.M.G. Freire, Biosurfactants: production and applications, Biodegradation-life of science, (2013) 31-61.
DOI: 10.5772/56144
Google Scholar
[5]
Abdel-Mawgoud, Ahmad Mohammad, Rudolf Hausmann, Francois Lépine, Markus M. Müller, and Eric Déziel, Rhamnolipids: detection, analysis, biosynthesis, genetic regulation, and bioengineering of production, in: Biosurfactants, Springer, Berlin, Heidelberg, 2011, pp.13-55.
DOI: 10.1007/978-3-642-14490-5_2
Google Scholar
[6]
Li, Qingxin, Rhamnolipid synthesis and production with diverse resources, Frontiers of Chemical Science and Engineering 11, no. 1 (2017) 27-36.
Google Scholar
[7]
Abbasi, Habib, Mir Manochehr Hamedi, Tayebe Bagheri Lotfabad, Hossein Shahbani Zahiri, Hakimeh Sharafi, Fatemeh Masoomi, Ali Akbar Moosavi-Movahedi, Antonio Ortiz, Massoud Amanlou, and Kambiz Akbari Noghabi, Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant, Journal of bioscience and bioengineering 113, no. 2 (2012) 211-219.
DOI: 10.1016/j.jbiosc.2011.10.002
Google Scholar
[8]
Silva, Rita De Cássia FS, Darne G. Almeida, Raquel D. Rufino, Juliana M. Luna, Valdemir A. Santos, and Leonie Asfora Sarubbo, Applications of biosurfactants in the petroleum industry and the remediation of oil spills, International journal of molecular sciences 15, no. 7 (2014) 12523-12542.
DOI: 10.3390/ijms150712523
Google Scholar
[9]
Sinumvayo, Jean Paul, and Nestor Ishimwe., Agriculture and food applications of rhamnolipids and its production by Pseudomonas aeruginosa, Journal of Chemical Engineering & Process Technology 6, no. 2 (2015) 223.
DOI: 10.4172/2157-7048.1000223
Google Scholar
[10]
Varnier, A.L., Lisa Sanchez, Parul Vatsa, Leslie Boudesocque, Angela, Garcia‐Brigger, Fanja Rabenoelina, Alexander Sorokin et al. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine, Plant, cell & environment 32, no. 2 (2009) 178-193.
DOI: 10.1111/j.1365-3040.2008.01911.x
Google Scholar
[11]
Sekhon Randhawa, Kamaljeet K., and Pattanathu KSM Rahman, Rhamnolipid biosurfactants—past, present, and future scenario of global market, Frontiers in microbiology 5 (2014) 454.
DOI: 10.3389/fmicb.2014.00454
Google Scholar
[12]
Hrůzová, Kateřina, Alok Patel, Jan Masák, Olga Maťátková, Ulrika Rova, Paul Christakopoulos, and Leonidas Matsakas, A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass, Science of The Total Environment 711 (2020) 135099.
DOI: 10.1016/j.scitotenv.2019.135099
Google Scholar
[13]
Nitschke, Marcia, Siddhartha GVAO Costa, and Jonas Contiero, Structure and applications of a rhamnolipid surfactant produced in soybean oil waste, Applied biochemistry and biotechnology 160, no. 7 (2010) 2066-2074.
DOI: 10.1007/s12010-009-8707-8
Google Scholar
[14]
Benincasa, Maria, and Fábio Raphael Accorsini, Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate, Bioresource Technology 99, no. 9 (2008) 3843-3849.
DOI: 10.1016/j.biortech.2007.06.048
Google Scholar
[15]
Henkel, Marius, Markus M. Müller, Johannes H. Kügler, Roberta B. Lovaglio, Jonas Contiero, Christoph Syldatk, and Rudolf Hausmann, Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production, Process Biochemistry 47, no. 8 (2012) 1207-1219.
DOI: 10.1016/j.procbio.2012.04.018
Google Scholar
[16]
Tan, Yun Nian, and Qingxin Li., Microbial production of rhamnolipids using sugars as carbon sources, Microbial cell factories 17, no. 1 (2018) 89.
DOI: 10.1186/s12934-018-0938-3
Google Scholar
[17]
Pertanian, DJP Kementrian, Statistik Perkebunan Indonesia 2018-2020, Jakarta: Kementerian Pertanian, (2019).
Google Scholar
[18]
Hambali, E., and M. Rivai., The potential of palm oil waste biomass in Indonesia in 2020 and 2030, In IOP Conference Series: Earth and Environmental Science, vol. 65, no. 1. IOP Publishing, (2017).
DOI: 10.1088/1755-1315/65/1/012050
Google Scholar
[19]
Information on http://lipi.go.id/berita.
Google Scholar
[20]
Surya, E.A., S.F. Rahman, S. Zulamraini, and M. Gozan., Preliminary plant design of Escherichia coli BPPTCC-EgRK2 cell culture for recombinant cellulase production using Oil Palm Empty Fruit Bunch (OPEFB) as substrate, In IOP Conference Series: Earth and Environmental Science, vol. 141, no. 1, p.012030. IOP Publishing Ltd., (2018).
DOI: 10.1088/1755-1315/141/1/012030
Google Scholar
[21]
Han, Minhee, Yule Kim, Seung Wook Kim, and Gi‐Wook Choi., High efficiency bioethanol production from OPEFB using pilot pretreatment reactor, Journal of Chemical Technology & Biotechnology 86, no. 12 (2011) 1527-1534.
DOI: 10.1002/jctb.2668
Google Scholar
[22]
Jeon, Hyungjin, Kyeong-Eop Kang, Jun-Seong Jeong, Gyeongtaek Gong, Jae-Wook Choi, Haznan Abimanyu, Byoung Sung Ahn, Dong-Jin Suh, and Gi-Wook Choi., Production of anhydrous ethanol using oil palm empty fruit bunch in a pilot plant, Biomass and bioenergy 67 (2014) 99-107.
DOI: 10.1016/j.biombioe.2014.04.022
Google Scholar
[23]
NREL (National Renewable Energy Laboratory) in Golden, CO., Enzymatic saccharification of lignocellulosic biomass, in the LAP (laboratory analytical procedure) (2008).
DOI: 10.2172/937357
Google Scholar
[24]
Tomar, G.S., and G. Srinikethan., Studies on production of biosurfactant from Pseudomonas aeruginosa (MTCC7815) & its application in microbial enhanced oil recovery, Res. J. Chem. Environ. Sci 4 (2016) 84-91.
Google Scholar
[25]
Tiso, Till, Andrea Germer, Benjamin Küpper, Rolf Wichmann, and Lars M. Blank., Methods for recombinant rhamnolipid production, in: Hydrocarbon and Lipid Microbiology Protocols, Springer, Berlin, Heidelberg, 2015, pp.65-94.
DOI: 10.1007/8623_2015_60
Google Scholar
[26]
Doran, P.M., Material balances, in: Bioprocess Engineering Principles Second Edition, Academic Press of Elsevier, Waltham, MA, 2013, pp.87-137.
Google Scholar
[27]
Pathaka, A.N., and H. Pranav., Optimization of rhamnolipid: A new age biosurfactant from Pseudomonas aeruginosa MTCC 1688 and its application in oil recovery, heavy and toxic metals recovery, J. Bioprocess Biotech 5 (2015) 1-29.
DOI: 10.4172/2155-9821.1000229
Google Scholar
[28]
Reiling, H.E., U. Thanei-Wyss, L.H. Guerra-Santos, R. Hirt, O. Käppeli, and A. Fiechter., Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa, Applied and Environmental Microbiology 51, no. 5 (1986) 985-989.
DOI: 10.1128/aem.51.5.985-989.1986
Google Scholar
[29]
Couper, James R., W. Roy Penney, and James R. Fair. Chemical Process Equipment-Selection and Design (Revised 2nd Edition). Gulf Professional Publishing, (2009).
Google Scholar
[30]
Petrides, Demetri., Bioprocess design and economics, in: Bioseparations Science and Engineering Second Edition, Oxford University Press, New York, 2000, pp.441-507.
Google Scholar
[31]
Information on https://www.agaetech.com/.
Google Scholar
[32]
Information on https://natsurfact.com/.
Google Scholar
[33]
Sullivan, William G., Elin M. Wicks, and James T. Luxhoj. Engineering economy. Vol. 13. Upper Saddle River, NJ: Prentice Hall, (2003).
Google Scholar