[1]
Y. LeCun, Y. Bengio, and G. Hinton, Deep learning,, Nature, vol. 521, p.436–444, (2015).
DOI: 10.1038/nature14539
Google Scholar
[2]
A. Krizhevsky, I. Sutskever, and G.E. Hinton, ImageNet classification with deep convolutional neural networks,, in Proc. Adv. Neural Inf. Process. Syst., vol. 25. (2012) p.1097–1105.
DOI: 10.1145/3065386
Google Scholar
[3]
C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, Optimizing FPGA-based accelerator design for deep convolution neural networks,, in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, 2015, p.161–170.
DOI: 10.1145/2684746.2689060
Google Scholar
[4]
Sutkver. I, G.E. Hinton and Krizhv sky ImageNet classification with deep convolutional neural networks,, in. Adv. Neural Inf. Process. Syst., vol. 34. (2015), p.1097–1105.
Google Scholar
[5]
K. Simonyan and A. Zisserman Silver. Mastering the game of Go with deep neural networks and tree search,, Nature, vol. 429, no. 7581, p.473–89, (2016).
Google Scholar
[6]
Y.-H. Chen, T. Krishna, J.S. Emer, and V. Sze, Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (ISSCC), San Francisco, CA, USA, Jan./Feb. 2016, p.262–263. Classify Images with TensorFlow Using Google Cloud Machine Learning and Dataflow,. S. Bilac. Searched on (2016).
DOI: 10.1109/isscc.2016.7418007
Google Scholar
[7]
Zisserman. A and K. Simonyan Very deep convolution networks for large-scale image recognition,,. (2014).
Google Scholar
[8]
Hameed et al., Understanding sources of inefficiency in general-purpose chips,, Proc. 37th Annu. Int. Symp. Comput. Archit., (2010), p.46.
Google Scholar
[9]
M. horowittz, Computing's energy problem "IEEE Int. Solid- State Circuits ,Conf. (ISSCC) Dig. Tech. Papers, (2014), p.10.
Google Scholar
[10]
S. Han et al., EIE: Efficient inference engine on compressed deep neural network,, in Proc. 43rd Int. Symp. Comput. Archit., (2016), p.56.
Google Scholar
[11]
J.-M. Muller and L. Beuchat, Automatic generation of modular multipliers for fpga applications,, IEEE Transactions on Computers, vol. 57, no. 12, (2008) p.1600.
DOI: 10.1109/tc.2008.102
Google Scholar
[12]
F. Dinechin, Detrey and X. Pujol, Return of the hardware floating-point elementary function,, in Proceedings of the 18th IEEE Computer Society Press, (2007), p.161-.
DOI: 10.1109/arith.2007.29
Google Scholar
[13]
H. Eberl, G.N. Shantz, V. Gupta, L. Rarick, and Sundaram, S. A public-key cryptographic processor for RSA and ECC,, in Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors (ASAP2004), (2004).
DOI: 10.1109/asap.2004.1342462
Google Scholar
[14]
H.R. Ismail, R.C., High performance complex number multiplier using booth-wallace algorithm,, in IEEE International Conference on Semiconductor Electronics ICSE, November (2006).
DOI: 10.1109/smelec.2006.380744
Google Scholar
[15]
Sutkver I, G.E. Hinton and Krizhv sky ImageNet classification with deep convolutional neural networks,, in. Adv. Neural Inf. Process. Syst., vol. 34. (2015), p.1097–1105.
Google Scholar
[16]
Silver. Mastering the game of Go with deep neural networks and tree search,, Nature, vol. 429, no. 7581, p.473–89, (2016).
Google Scholar
[17]
Classify Images with TensorFlow Using Google Cloud Machine Learning and Dataflow". S. Bilac. Searched 2016).
Google Scholar
[18]
Zisserman. A and K. Simonyan Very deep convolution networks for large-scale image recognition,, 15, (2014).
Google Scholar
[19]
Mohanty, B.K., Choubey, A. Efficient Design for Radix-8 Booth Multiplier and Its Application in Lifting 2-D DWT. Circuits Syst Signal Process 36, 1129–1149 (2017).
DOI: 10.1007/s00034-016-0349-9
Google Scholar