[1]
O. Auciello, A critical comparative review of PZT and SBT-based science and technology for non-volatile ferroelectric memories, Integr. Ferroelectric 15 (1997) 211-220.
DOI: 10.1080/10584589708015712
Google Scholar
[2]
Takashi Hase, Takehiro Noguchi, Yoichi Miyasaka, Analysis of the degradation of PZT and SrBi2Ta2O9 thin films with reductive process, Integr. Ferroelectric 16 (1997) 29-40.
Google Scholar
[3]
S.K. Kim, M. Miyayama, H. Yanagida, Electrical anisotropy of BaBi4Ti4O15 single crystal. J Ceram. Soc. Jpn 102 (1994) 722-726.
Google Scholar
[4]
S.K. Kim, M. Miyayama, H. Yanagida, Complex impedance and modulus analysis on electrical anisotropy of layer- structured BaBi4Ti4O15 single crystal in paraelectric phase, J. Ceram. Soc. 103 (1995) 315-318.
DOI: 10.2109/jcersj.103.315
Google Scholar
[5]
Yong-il Park, Miyayama, T. Kudo, Fabrication of PbBi4Ti4O15 and Pb2Bi4Ti5O18 thin films by sol-gel method, J. Ceram. Soc. Jpn. 107 (1999) 413-418.
DOI: 10.2109/jcersj.107.413
Google Scholar
[6]
Huiling Du, Xiang Shi, Huilu Li, Phase developments and dielectric responses of barium substituted four-layer Bi4Ti4O15 Aurivillius, Bull. Mater. Sci. 34 (2011) 1201–1207.
DOI: 10.1007/s12034-011-0236-8
Google Scholar
[7]
W.D Kingery, H.K. Bowen, D.R Uhlmann, Introduction to Ceramics, 2nd ed., Wiley, New York, (1976).
Google Scholar
[8]
Carlos Moure, Luis Lascano, Jesus Tartaj, Pedro Duran, Electrical behaviour of Bi5FeTi3O15 and its solid solutions with CaBi4Ti4O15, Ceram. Int. 29 (2003) 91-97.
DOI: 10.1016/s0272-8842(02)00096-2
Google Scholar
[9]
Xialian Zheng, Xinyou Huang, Chunhua Gao, Study on ferroelectric and dielectric properties of La-doped CaBi4Ti4O15 based ceramics, J Rare Earth 25 (2007) 168-172.
DOI: 10.1016/s1002-0721(07)60067-2
Google Scholar
[10]
Sunil Kumar, Swarup Kundu, D.A. Ochoa, J.E. Garcia, K.B.R. Varma, Raman scattering, microstructural and dielectric studies on Ba1-xCaxBi4Ti4O15 ceramics, Mater. Chem. Phy. 136 (2012) 680-687.
DOI: 10.1016/j.matchemphys.2012.07.042
Google Scholar
[11]
Aisha Malik, S. Hameed, M.J. Siddiqui, M.M. Haque, K. Umar, A. Khan, M. Muneer, Electrical and optical properties of nickel- and molybdenum-doped titanium dioxide nanoparticle: improved performance in dye-sensitized solar cell, J Mater. Eng. Perform 23 (2014) 3184- 3192.
DOI: 10.1007/s11665-014-0954-3
Google Scholar
[12]
A.A. Saif, Z.A. Zahid Jamal, Z. Sauli, P. Poopalan, Frequency dependent electrical properties of ferroelectric Ba0. 8Sr0. 2TiO2 thin film, Mater. Sci-Medzg. 17 (2011) 186-190.
DOI: 10.5755/j01.ms.17.2.490
Google Scholar
[13]
J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulphide nanoparticles, Mater. Res. Bull. 93 (2017) 63-73.
DOI: 10.1016/j.materresbull.2017.04.013
Google Scholar
[14]
B. Hymavathi, B. Rajesh Kumar, T. Subba Rao, Structural and dielectric properties of zinc cobalt oxide (ZnCo2O4) ceramics, AIP Conf. Proc. 1461 (2012) 299-302.
DOI: 10.1063/1.4736908
Google Scholar
[15]
B. Rajesh Kumar, T. Subba Rao, AC impedance spectroscopy studies on solid-state sintered zinc aluminium oxide (ZnAl2O4) ceramics, AIP Conf. Proc. 1461 (2012) 303-306.
DOI: 10.1063/1.4736909
Google Scholar
[16]
C. Barry Carter, M. Grant Norton, Ceramic Materials: Science and Engineering, Springer- Verlag, New York, (2013).
Google Scholar
[17]
A.K. Jonscher, Universal Relaxation Law, Chelsea Dielectric Press, London, (1996).
Google Scholar
[18]
Alo Dutta, T.P. Sinha, Santiranjan Shannigrahi, Dielectric relaxation and electronic structure of Ca(Fe1/2Sb1/2)O3, Phys. Rev. B 76 (2007) 155113.
Google Scholar