Effect of Fiber Length and Content on the Mechanical Properties of Pineapple Leaf Fiber Reinforced-Epoxy Composites

Article Preview

Abstract:

The behavior of a composite material under mechanical loading condition is significantly influenced by the geometrical dimensions (length and diameter) and the total content of reinforcing fiber. Therefore, this research work focused the effect of fiber length and content on the mechanical behavior of pineapple leaf fiber (PALF) reinforced-epoxy composites. In this regard, the total of four composite samples for each fiber length (10, 15, 20, and 25 mm) and content (17, 23, 34, and 43 vol.%) were developed using a hand lay-up molding technique and characterized for mechanical properties according to ASTM standards. The tensile and flexural strength of a composite was increased with the increase of PALF length and content up to 15 mm and 34 vol.% respectively. However, the composite of 25 mm fiber length with 43% fiber volume content exhibits the maximum impact strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-77

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nishino, K. Hirao, M. Kotera, K. Nakamae, H. Inagaki, Kenaf reinforced biodegradable composite, Compos. Sci. Technol. 63 (2003) 1281-86.

DOI: 10.1016/s0266-3538(03)00099-x

Google Scholar

[2] A.K. Mohanty, L.T. Drzal, M. Mishra, Novel hybrid coupling agent as an adhesion promoter in natural fiber reinforced polypropylene composites, J. Mater. Sci. Lett. 21 (2002) 1885-88.

Google Scholar

[3] M. Ramesh, R. Logesh, M. Manikandan, N.S. Kumar, D. Pratap, Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites, Mater. Res. 10 (2016) 1-12.

DOI: 10.1590/1980-5373-mr-2016-0760

Google Scholar

[4] E. Osman, A. Vakhguelt, I. Sbarski, S. Mutasher, Water absorption behaviour and its effect on the mechanical properties of kenaf natural fiber unsaturated polyester composites, 18th International Conference on Composite Materials.

DOI: 10.4028/www.scientific.net/amr.311-313.260

Google Scholar

[5] N. Kengkhekit, T. Amornsakchi, A new approach to Greening, plastic composites using pineapple leaf waste for performance and cost effectiveness, Mater. Des. 55 (2014) 292-99.

DOI: 10.1016/j.matdes.2013.10.005

Google Scholar

[6] S. Mishra, A.K. Mohanty, L.T. Drzal, M. Mishra, G. Hinrichsen A review on pineapple leaf fibers, sisal fibers and their biocomposites, Macromol. Mater. Eng. 289 (2004) 955-74.

DOI: 10.1002/mame.200400132

Google Scholar

[7] U. Wisittanawat, S. Thanawan, T. Amornsakchai, Mechanical properties of highly aligned short pineapple leaf fiber reinforced–Nitrile rubber composite: Effect of fiber content and bonding agent, Polym. Test. 35 (2014) 20-27.

DOI: 10.1016/j.polymertesting.2014.02.003

Google Scholar

[8] N. Kengkhekit, T. Amornsakchi, Utilisation of pineapple leaf waste for plastic reinforcement: A novel extraction method for short pineapple leaf fiber, Ind. Crops. Prod. 40 (2012) 55-61.

DOI: 10.1016/j.indcrop.2012.02.037

Google Scholar

[9] S. Ozturk, Effect of fiber loading on the mechanical properties of kenaf and fiberfrax fiber reinforced phenol formaldehyde composites, J. Compos. Mater. 44 (2010) 2265-88.

DOI: 10.1177/0021998310364265

Google Scholar

[10] M.C.N. Yemele, A. Koubaa, A. Cloutier, P. Soulounganga, M. Wolcott, Effect of bark fiber content and size on the mechanical properties of Bark/HDPE composites, Compos. Part A, 41 (2010) 131-137.

DOI: 10.1016/j.compositesa.2009.06.005

Google Scholar

[11] X. Zhao, R. Li, S. Bai, Mechanical properties of sisal fiber reinforced high density polyethylene composites: Effect of fiber content, interfacial compatibilization, and manufacturing process, Compos. Part A, 65 (2014) 169-174.

DOI: 10.1016/j.compositesa.2014.06.017

Google Scholar

[12] Y.A. El-Shekeil, S.M. Sapuan, K. Abdan, E.S. Zainudin, Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites, Mater. Des. 40 (2012) 299-303.

DOI: 10.1016/j.matdes.2012.04.003

Google Scholar

[13] B. Bakri, S. Chandrabakty, K. Putra, Evaluation of mechanical properties of coir-angustifolia haw agave fiber reinforced hybrid epoxy composite, J. Mech. Eng. 8 (2017) 679-685.

DOI: 10.1088/1755-1315/175/1/012002

Google Scholar

[14] W.Z.W. Zahari, R.N. Badri, H. Ardyananta, D. Kurniawan, F.M. Nor, Mechanical properties and water absorption behaviour of Polypropylene/Ijuk Fiber composite by using silane treatment, Procedia. Manuf. 2 (2015) 573-578.

DOI: 10.1016/j.promfg.2015.07.099

Google Scholar

[15] K. Zhang, F. Wang, W. Liang, Z. Wang, Z. Duan, Z. Duan, B. Yang, Thermal and mechanical properties of bamboo fiber reinforced epoxy composites, Polym. 10 (2018) 1-18.

DOI: 10.3390/polym10060608

Google Scholar