[1]
T. Nishino, K. Hirao, M. Kotera, K. Nakamae, H. Inagaki, Kenaf reinforced biodegradable composite, Compos. Sci. Technol. 63 (2003) 1281-86.
DOI: 10.1016/s0266-3538(03)00099-x
Google Scholar
[2]
A.K. Mohanty, L.T. Drzal, M. Mishra, Novel hybrid coupling agent as an adhesion promoter in natural fiber reinforced polypropylene composites, J. Mater. Sci. Lett. 21 (2002) 1885-88.
Google Scholar
[3]
M. Ramesh, R. Logesh, M. Manikandan, N.S. Kumar, D. Pratap, Mechanical and water intake properties of banana-carbon hybrid fiber reinforced polymer composites, Mater. Res. 10 (2016) 1-12.
DOI: 10.1590/1980-5373-mr-2016-0760
Google Scholar
[4]
E. Osman, A. Vakhguelt, I. Sbarski, S. Mutasher, Water absorption behaviour and its effect on the mechanical properties of kenaf natural fiber unsaturated polyester composites, 18th International Conference on Composite Materials.
DOI: 10.4028/www.scientific.net/amr.311-313.260
Google Scholar
[5]
N. Kengkhekit, T. Amornsakchi, A new approach to Greening, plastic composites using pineapple leaf waste for performance and cost effectiveness, Mater. Des. 55 (2014) 292-99.
DOI: 10.1016/j.matdes.2013.10.005
Google Scholar
[6]
S. Mishra, A.K. Mohanty, L.T. Drzal, M. Mishra, G. Hinrichsen A review on pineapple leaf fibers, sisal fibers and their biocomposites, Macromol. Mater. Eng. 289 (2004) 955-74.
DOI: 10.1002/mame.200400132
Google Scholar
[7]
U. Wisittanawat, S. Thanawan, T. Amornsakchai, Mechanical properties of highly aligned short pineapple leaf fiber reinforced–Nitrile rubber composite: Effect of fiber content and bonding agent, Polym. Test. 35 (2014) 20-27.
DOI: 10.1016/j.polymertesting.2014.02.003
Google Scholar
[8]
N. Kengkhekit, T. Amornsakchi, Utilisation of pineapple leaf waste for plastic reinforcement: A novel extraction method for short pineapple leaf fiber, Ind. Crops. Prod. 40 (2012) 55-61.
DOI: 10.1016/j.indcrop.2012.02.037
Google Scholar
[9]
S. Ozturk, Effect of fiber loading on the mechanical properties of kenaf and fiberfrax fiber reinforced phenol formaldehyde composites, J. Compos. Mater. 44 (2010) 2265-88.
DOI: 10.1177/0021998310364265
Google Scholar
[10]
M.C.N. Yemele, A. Koubaa, A. Cloutier, P. Soulounganga, M. Wolcott, Effect of bark fiber content and size on the mechanical properties of Bark/HDPE composites, Compos. Part A, 41 (2010) 131-137.
DOI: 10.1016/j.compositesa.2009.06.005
Google Scholar
[11]
X. Zhao, R. Li, S. Bai, Mechanical properties of sisal fiber reinforced high density polyethylene composites: Effect of fiber content, interfacial compatibilization, and manufacturing process, Compos. Part A, 65 (2014) 169-174.
DOI: 10.1016/j.compositesa.2014.06.017
Google Scholar
[12]
Y.A. El-Shekeil, S.M. Sapuan, K. Abdan, E.S. Zainudin, Influence of fiber content on the mechanical and thermal properties of kenaf fiber reinforced thermoplastic polyurethane composites, Mater. Des. 40 (2012) 299-303.
DOI: 10.1016/j.matdes.2012.04.003
Google Scholar
[13]
B. Bakri, S. Chandrabakty, K. Putra, Evaluation of mechanical properties of coir-angustifolia haw agave fiber reinforced hybrid epoxy composite, J. Mech. Eng. 8 (2017) 679-685.
DOI: 10.1088/1755-1315/175/1/012002
Google Scholar
[14]
W.Z.W. Zahari, R.N. Badri, H. Ardyananta, D. Kurniawan, F.M. Nor, Mechanical properties and water absorption behaviour of Polypropylene/Ijuk Fiber composite by using silane treatment, Procedia. Manuf. 2 (2015) 573-578.
DOI: 10.1016/j.promfg.2015.07.099
Google Scholar
[15]
K. Zhang, F. Wang, W. Liang, Z. Wang, Z. Duan, Z. Duan, B. Yang, Thermal and mechanical properties of bamboo fiber reinforced epoxy composites, Polym. 10 (2018) 1-18.
DOI: 10.3390/polym10060608
Google Scholar