[1]
L. J. Akinbami, J. E. Moorman, P. L. Garbe, and E. J. Sondik, Status of childhood asthma in the United States, 1980-2007,, Pediatrics, 2009,.
DOI: 10.1542/peds.2008-2233c
Google Scholar
[2]
H. Ritchie and M. Roser, CO₂ and Greenhouse Gas Emissions,, Our World in Data. (2020).
Google Scholar
[3]
A. Ghorani-Azam, B. Riahi-Zanjani, and M. Balali-Mood, Effects of air pollution on human health and practical measures for prevention in Iran,, Journal of Research in Medical Sciences. 2016,.
DOI: 10.4103/1735-1995.189646
Google Scholar
[4]
H. Riojas-Rodríguez, I. Romieu, and M. Hernández-Ávila, Air pollution,, in Occupational and Environmental Health, (2017).
Google Scholar
[5]
Centers for Disease Control and Prevention, People who are at higher risk for severe illness | CDC,, Centers for Disease Control and Prevention. (2020).
DOI: 10.1093/ofid/ofv131.60
Google Scholar
[6]
O. Ogunkunle and N. A. Ahmed, A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines,, Energy Reports, vol. 5, p.1560–1579, Nov. 2019,.
DOI: 10.1016/j.egyr.2019.10.028
Google Scholar
[7]
L. Y. K. Nakada and R. C. Urban, COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil,, Sci. Total Environ., 2020, doi: https://doi.org/10.1016/j.scitotenv.2020.139087.
DOI: 10.1016/j.scitotenv.2020.139087
Google Scholar
[8]
E. Livingston and K. Bucher, Coronavirus Disease 2019 (COVID-19) in Italy,, JAMA, vol. 323, no. 14, p.1335, Apr. 2020,.
DOI: 10.1001/jama.2020.4344
Google Scholar
[9]
T. Hale, Webster, Sam, and B. K. Anna Petherick, Toby Phillips, Oxford COVID-19 Government Response Tracker,, Blavatnik School of Government, 2020.
Google Scholar
[10]
T. Hale, S. Webster, A. Petherick, P. Toby, and B. Kira, Oxford COVID-19 Government Response Tracker, Blavatnik School of Government,, Data use policy Creat. Commons Attrib. CC BY Stand., (2020).
Google Scholar
[11]
Y. Ogen, Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality,, Sci. Total Environ., 2020,.
DOI: 10.1016/j.scitotenv.2020.138605
Google Scholar
[12]
E. Conticini, B. Frediani, and D. Caro, Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?,, Environmental Pollution. 2020,.
DOI: 10.1016/j.envpol.2020.114465
Google Scholar
[13]
Y. Cao, M. Chen, D. Dong, S. Xie, and M. Liu, Environmental pollutants damage airway epithelial cell cilia: Implications for the prevention of obstructive lung diseases,, Thoracic Cancer. 2020,.
DOI: 10.1111/1759-7714.13323
Google Scholar
[14]
United States Environmental Protection Agency, Global Greenhouse Gas Emissions Data | Greenhouse Gas (GHG) Emissions | US EPA,, United States Environmental Protection Agency. 2019,.
DOI: 10.1111/ropr.12017
Google Scholar
[15]
World Health Organization (WHO), Novel Coronavirus (2019-nCoV),, WHO Bull., (2020).
Google Scholar
[16]
E. Livingston and K. Bucher, Coronavirus Disease 2019 (COVID-19) in Italy,, JAMA, vol. 323, no. 14, p.1335, Apr. 2020,.
DOI: 10.1001/jama.2020.4344
Google Scholar
[17]
M. W. Frampton et al., Nitrogen dioxide exposure: Effects on airway and blood cells,, Am. J. Physiol. - Lung Cell. Mol. Physiol., 2002,.
Google Scholar
[18]
M. Kampa and E. Castanas, Human health effects of air pollution,, Environmental Pollution. 2008,.
DOI: 10.1016/j.envpol.2007.06.012
Google Scholar
[19]
L. J. L. Forbes et al., Chronic exposure to outdoor air pollution and lung function in adults,, Thorax, 2009,.
Google Scholar
[20]
T. Bourdrel, M. A. Bind, Y. Béjot, O. Morel, and J. F. Argacha, Cardiovascular effects of air pollution,, Archives of Cardiovascular Diseases. 2017,.
DOI: 10.1016/j.acvd.2017.05.003
Google Scholar
[21]
L. Myllyvirta, Coronavirus has temporarily reduced China's CO2 emissions by a quarter,, Carbon Br., (2020).
Google Scholar
[22]
L. Y. K. Nakada and R. C. Urban, COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil,, Sci. Total Environ., 2020, doi: https://doi.org/10.1016/j.scitotenv.2020.139087.
DOI: 10.1016/j.scitotenv.2020.139087
Google Scholar
[23]
T. Hale, Webster, Sam, and B. K. Anna Petherick, Toby Phillips, Oxford COVID-19 Government Response Tracker,, Blavatnik School of Government, 2020.
Google Scholar
[24]
T. Hale, S. Webster, A. Petherick, P. Toby, and B. Kira, Oxford COVID-19 Government Response Tracker, Blavatnik School of Government,, Data use policy Creat. Commons Attrib. CC BY Stand., (2020).
Google Scholar
[25]
Y. Cui et al., Air pollution and case fatality of SARS in the People's Republic of China: an ecologic study,, Environ. Heal., 2003,.
Google Scholar
[26]
EPA-USA, Lean Manufacturing and the Environment : Research on advanced manufacturing systems and the environment and recommendations for leveraging better environmental performance,, Contract, (2003).
Google Scholar
[27]
US EPA, The Lean and Environment Toolkit,, Prevention, (2007).
Google Scholar
[28]
N. R. Khalili, S. Duecker, W. Ashton, and F. Chavez, From cleaner production to sustainable development: the role of academia,, J. Clean. Prod., vol. 96, p.30–43, Jun. 2015,.
DOI: 10.1016/j.jclepro.2014.01.099
Google Scholar
[29]
S. M. El-Haggar, Sustainable Development and Environmental Reform,, in Sustainable Industrial Design and Waste Management, S. M. B. T.-S. I. D. and W. M. El-Haggar, Ed. Oxford: Elsevier, 2007, p.125–148.
DOI: 10.1016/b978-012373623-9/50006-x
Google Scholar
[30]
S. A. Kale, Renewable energy systems. Elsevier, (2016).
Google Scholar
[31]
S. M. El-Haggar, Sustainable Industrial Design and Waste Management. Elsevier, (2007).
Google Scholar
[32]
T. M. Y. Khan, A. E. Atabani, I. A. Badruddin, A. Badarudin, M. S. Khayoon, and S. Triwahyono, Recent scenario and technologies to utilize non-edible oils for biodiesel production,, Renew. Sustain. Energy Rev., vol. 37, p.840–851, 2014,.
DOI: 10.1016/j.rser.2014.05.064
Google Scholar
[33]
J. A. Gimpel, E. A. Specht, D. R. Georgianna, and S. P. Mayfield, Advances in microalgae engineering and synthetic biology applications for biofuel production,, Curr. Opin. Chem. Biol., vol. 17, no. 3, p.489–495, 2013,.
DOI: 10.1016/j.cbpa.2013.03.038
Google Scholar
[34]
M. Faried, M. Samer, E. Abdelsalam, R. S. Yousef, Y. A. Attia, and A. S. Ali, Biodiesel production from microalgae: Processes, technologies and recent advancements,, Renewable and Sustainable Energy Reviews. 2017,.
DOI: 10.1016/j.rser.2017.05.199
Google Scholar
[35]
É. C. Francisco, D. B. Neves, E. Jacob-Lopes, and T. T. Franco, Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality,, J. Chem. Technol. Biotechnol., vol. 85, no. 3, p.395–403, Mar. 2010,.
DOI: 10.1002/jctb.2338
Google Scholar
[36]
T. M. Mata, A. A. Martins, and N. S. Caetano, Microalgae for biodiesel production and other applications: A review,, Renewable and Sustainable Energy Reviews. 2010,.
DOI: 10.1016/j.rser.2009.07.020
Google Scholar
[37]
M. P. Sudhakar and S. Viswanaathan, Algae as a Sustainable and Renewable Bioresource for Bio-Fuel Production,, in New and Future Developments in Microbial Biotechnology and Bioengineering, (2019).
DOI: 10.1016/b978-0-444-64191-5.00006-7
Google Scholar
[38]
J. Kennedy Mwangi et al., Microalgae oil: Algae cultivation and harvest, algae residue torrefaction and diesel engine emissions tests,, Aerosol Air Qual. Res., 2015,.
DOI: 10.4209/aaqr.2014.10.0268
Google Scholar
[39]
L. Chen, T. Liu, W. Zhang, X. Chen, and J. Wang, Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion,, Bioresour. Technol., 2012,.
DOI: 10.1016/j.biortech.2012.02.033
Google Scholar
[40]
V. L. Colin, A. Rodríguez, and H. A. Cristbal, The role of synthetic biology in the design of microbial cell factories for biofuel production,, J. Biomed. Biotechnol., vol. 2011, 2011,.
Google Scholar
[41]
A. F. Clarens, H. Nassau, E. P. Resurreccion, M. A. White, and L. M. Colosi, Environmental impacts of algae-derived biodiesel and bioelectricity for transportation,, Environ. Sci. Technol., 2011,.
DOI: 10.1021/es200760n
Google Scholar
[42]
J. B. Morgan and E. L. Connolly, Plant-Soil Interactions: Nutrient Uptake,, Nat. Educ. Knowl., vol. 4, no. 8, p.2, (2013).
Google Scholar
[43]
S. Tayari, R. Abedi, and A. Rahi, Comparative assessment of engine performance and emissions fueled with three different biodiesel generations,, Renew. Energy, vol. 147, p.1058–1069, Mar. 2020,.
DOI: 10.1016/j.renene.2019.09.068
Google Scholar
[44]
M. M. Roy, J. Calder, W. Wang, A. Mangad, and F. C. M. Diniz, Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends,, Appl. Energy, 2016,.
DOI: 10.1016/j.apenergy.2016.07.090
Google Scholar
[45]
P. M. Ejikeme et al., Catalysis in biodiesel production by transesterification processes-an insight,, E-Journal Chem., 2010,.
Google Scholar
[46]
Y. Javadzadeh and S. Hamedeyaz, Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease,, in Trends in Helicobacter pylori Infection, vol. i, no. tourism, InTech, 2014, p.13.
DOI: 10.5772/57353
Google Scholar
[47]
Y. T. Tsai, H. mu Lin, and M. J. Lee, Biodiesel production with continuous supercritical process: Non-catalytic transesterification and esterification with or without carbon dioxide,, Bioresour. Technol., vol. 145, p.362–369, 2013,.
DOI: 10.1016/j.biortech.2012.12.157
Google Scholar
[48]
T. Pinnarat and P. E. Savage, Noncatalytic esterification of oleic acid in ethanol,, J. Supercrit. Fluids, vol. 53, no. 1–3, p.53–59, 2010,.
DOI: 10.1016/j.supflu.2010.02.008
Google Scholar
[49]
H. J. Cho, S. H. Kim, S. W. Hong, and Y. K. Yeo, A single step non-catalytic esterification of palm fatty acid distillate (PFAD) for biodiesel production,, Fuel, vol. 93, p.373–380, 2012,.
DOI: 10.1016/j.fuel.2011.08.063
Google Scholar