[1]
Y. Bian, M. Liu, G. Ke, Y. Chen, J. DiBattista, E. Chan, Y. Yang, Aluminum nitride thin film growth and applications for heat dissipation, Surf. and Coat. Tech. 267 (2015) 65-69.
DOI: 10.1016/j.surfcoat.2014.11.060
Google Scholar
[2]
R. R. Lee, Development of high thermal conductivity aluminum nitride ceramic, J. Am. Cer. Soc. 74(9) (1991) 2242-2249.
Google Scholar
[3]
K. M. Taylor, C. Lenie, Some properties of aluminum nitride, J. Electrochem. Soc. 107(4) (1960) 308.
DOI: 10.1149/1.2427686
Google Scholar
[4]
X. Shi, X. Yu, C. Nie, F. Li, S. Zhang, Controlled growth of nanocrystalline aluminum nitride films for full-color range, Cer. Int. 47(15) (2021) 21546-21553.
DOI: 10.1016/j.ceramint.2021.04.166
Google Scholar
[5]
S. Shanmugan, D. Mutharasu, A. H. Haslan, A study on AlN thin film as thermal interface material for high power LED, Int. J. Electron. Comput. Sci. Eng. 2(1) (2012) 296-300.
Google Scholar
[6]
Y. Baik, R. A. Drew, Aluminum nitride: processing and applications, Key Engg. Mat. 122 (1990) 553.
Google Scholar
[7]
H. S. Hong, G. S. Chung, E ect of thermal annealing on the SAW properties of AlN films deposited on Si substrate, J Korean Phy. Soc. (2009) 54.
DOI: 10.3938/jkps.54.1519
Google Scholar
[8]
A. F. Júnior, D. J. Shanafield, Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics, Ceramica. 50 (2004) 247-253.
DOI: 10.1590/s0366-69132004000300012
Google Scholar
[9]
B. Berzina, L. Trinkler, V. Korsaks, R. Ruska, Nitrogen vacancy type defect luminescence of AlN nanopowder, Opt. Mat. 108 (2020) 110069.
DOI: 10.1016/j.optmat.2020.110069
Google Scholar
[10]
T. L. Tansley, R. J. Egan, Point-defect energies in the nitrides of aluminum, gallium, and indium, Physical Review B. 45(19) (1992) 10942.
DOI: 10.1103/physrevb.45.10942
Google Scholar
[11]
L. Trinkler, L. Botter-Jensen, P. Christensen, B. Berzina, Studies of aluminum nitride ceramics for application in UV dosimetry, Radiation protection dosimetry. 92(4) (2000) 299-306.
DOI: 10.1093/oxfordjournals.rpd.a033296
Google Scholar
[12]
S. Zhao, A. T. Connie, M. H. T. Dastjerdi, X. H. Kong, Q. Wang, M. Djavid, S. Sadaf, X. D. Liu, I. Shih, H. Guo, Z. Mi, Aluminum nitride nanowire light-emitting diodes: Breaking the fundamental bottleneck of deep ultraviolet light sources, Sc. rep. 5(1) (2015) 1-5.
DOI: 10.1038/srep08332
Google Scholar
[13]
I. Musa, N. Qamhieh, K. Said, S. T. Mahmoud, H. Alawadhi, Fabrication and characterization of aluminum nitride nanoparticles by RF magnetron sputtering and inert gas condensation technique, Coatings. 10(4) (2020) 411.
DOI: 10.3390/coatings10040411
Google Scholar
[14]
J. Olivares, S. González-Castilla, M. Clement, A. Sanz-Hervás, L. Vergara, J. Sangrador, E. Iborra, Combined assessment of piezoelectric AlN films using X-ray diffraction, infrared absorption, and atomic force microscopy, Diamond and related materials. 16(4-7) (2007) 1421-1424.
DOI: 10.1016/j.diamond.2006.11.065
Google Scholar
[15]
J. C. Oliveira, A. Cavaleiro, M. T. Vieira, Effect of thermal annealing on the structure and hardness of PVD AlN (Er), In Key Engineering Materials, Trans Tech Publications Ltd. 230 (2002) 114-117.
DOI: 10.4028/www.scientific.net/kem.230-232.114
Google Scholar
[16]
M. H. Park, S. H. Kim, Thermal conductivity of AlN thin films deposited by RF magnetron sputtering, Materials Science in Semiconductor Processing. 15(1) (2012) 6-10.
DOI: 10.1016/j.mssp.2011.04.007
Google Scholar
[17]
B. E. Belkerk, S. Bensalem, A. Soussou, M. Carette, H. Al-Brithen, M. A. Djouadi, Y. Scudeller, Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature, App. Phy. Lett. 105(22) (2014) 221905.
DOI: 10.1063/1.4903220
Google Scholar
[18]
A. V. Singh, S. Chandra, A. K. Srivastava, B. R. Chakroborty, G. Sehgal, M. K. Dalai, G. Bose, Structural and optical properties of RF magnetron sputtered aluminum nitride films without external substrate heating, App. Surf. Sc. 257(22) (2011) 9568-9573.
DOI: 10.1016/j.apsusc.2011.06.065
Google Scholar
[19]
D. Chen, J. Wang, D. Xu, Y. Zhang, The influence of defects and impurities in polycrystalline AlN films on the violet and blue photoluminescence, Vacuum. 83(5) (2009) 865-868.
DOI: 10.1016/j.vacuum.2008.09.003
Google Scholar
[20]
G. Shukla, A. Khare, Dependence of N2 pressure on the crystal structure and surface quality of AlN thin films deposited via pulsed laser deposition technique at room temperature, App. Surf. Sc. 255(5) (2008) 2057-2062.
DOI: 10.1016/j.apsusc.2008.06.190
Google Scholar
[21]
Z. Q. Yao, Y. Q. Li, J. X. Tang, W. J. Zhang, S. T. Lee, Growth and photoluminescence studies of AlN thin films with different orientation degrees, Diamond and Related Materials. 17(7-10) (2008) 1785-1790.
DOI: 10.1016/j.diamond.2008.02.009
Google Scholar
[22]
M. Alevli, C. Ozgit, I. Donmez, N. Biyikli, Optical properties of AlN thin films grown by plasma-enhanced atomic layer deposition, J. Vac. Sc. & Tech. A: Vacuum, Surfaces, and Films. 30 (2) (2012) 021506.
DOI: 10.1116/1.3687937
Google Scholar
[23]
D. Chen, J. Wang, D. Xu, Y. Zhang, The influence of defects and impurities in polycrystalline AlN films on the violet and blue photoluminescence, Vac. 83(5) (2009) 865-868.
DOI: 10.1016/j.vacuum.2008.09.003
Google Scholar