Structural and Electrical Properties of Rare Earth/ Ferrites: Studied for Resistive Switching Device Application

Article Preview

Abstract:

The storage of large amount of data is a global challenge. Nonvolatile memory devices have been the recent focus of researchers because data is retained after removing power supply in these devices. Resistive random-access memory device has large storage density and it works on high operation speed, so this has motivated me to work on resistive switching device. The nanocrystalline material of general formula Gd2O3 has been synthesized by simplified sol-gel process and CoFe1.9Ce0.1O4 has been synthesized by coprecipitation process. Gd2O3 samples were calcinated at 500 °C for 2 hours and CoFe1.9Ce0.1O4 samples were calcinated at 600 °C for 2 hours and the pellets were sintered at 630 °C for 3 hours. The nanocomposite of general formula (x)Gd2O3 +(1-x) CoFe1.9Ce0.1O4 with x=0,0.3 has been synthesized by wet chemical method. X-ray diffraction technique has been done for structural analysis which confirms the cubic structure of CoFe1.9Ce0.1O4 material. AC conductivity has increased with increased frequency of this sample. This sample with 0.1 concentration of Cerium has good resistive switching properties. (x)Gd2O3 +(1-x) CoFe1.9Ce0.1O4 sample shows increased conductivity hence switching mechanism further enhances from CoFe1.9Ce0.1O4 sample so it is a potential candidate for resistive switching device application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

September 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Fois, T. Cox, N. Ratcliffe, B. L. Costello, Rare earth doped metal oxide sensor for the multimodal detection of volatile organic compounds (VOCs), Sens. Actuators. B: Chem. 330 (2021). 129264.

DOI: 10.1016/j.snb.2020.129264

Google Scholar

[2] E.A.R Assirey, Perovskite synthesis, properties and their related biochemical and industrial application, Saudi. Pharm. J. 27(6) (2019) 817-829.

DOI: 10.1016/j.jsps.2019.05.003

Google Scholar

[3] Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Yan, Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications, Chem. Soc. Rev. 49(4) (2020) 1109-1143.

DOI: 10.1039/c9cs00330d

Google Scholar

[4] X. Chen, L. Xu, C. Chen, Y. Wu, W. Bi, Z. Song, H. Song, Rare earth ions doped NiOx hole transport layer for efficient and stable inverted perovskite solar cells, J. Power. Sources. 444 (2019) 227267.

DOI: 10.1016/j.jpowsour.2019.227267

Google Scholar

[5] A. Demont, S. Hebert, J. Howing, Y. Breard, D. Pelloquin, Large oxygen nonstoichiometry in La0.77Sr3.23Co2.75C0.25O8.40+δ oxide (δ= 0, 1.3) related to n= 3 RP series. Inorg. Chem. 52(3) (2013) 1265-1274.

DOI: 10.1021/ic3017694

Google Scholar

[6] C. Zhu, Z. Cai, B. Luo, L. Guo, L. Li, X. Wang, High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A. 8(2) (2020) 683-692.

DOI: 10.1039/c9ta10347c

Google Scholar

[7] Q. Shen, Y. Jiang, S. Li, X. Lv, G. Yang, B. Sunden, Synthesis and experimental study of novel double perovskite Ba2NixCo2−xO6 as promising oxygen carrier materials for CO2 capture application, Int. J. Energy. Res. 44(8) (2020) 6991-6999.

DOI: 10.1002/er.5472

Google Scholar

[8] C. Sun, J. A. Alonso, J. Bian, Recent advances in perovskite‐type oxides for energy conversion and storage applications, Adv. Energy. Mater. 11(2) (2021) 2000459.

DOI: 10.1002/aenm.202000459

Google Scholar

[9] T. Prodromakis, C. Papavassiliou, Engineering the Maxwell–Wagner polarization effect, Appl. Surf. Sci. 255(15) 2009) 6989-6994.

DOI: 10.1016/j.apsusc.2009.03.030

Google Scholar

[10] S. Ojha, M. S. Ali, M. Roy, S. Bhattacharya, Hopping frequency and conductivity relaxation of promising chalcogenides: AC conductivity and dielectric relaxation approaches, Mater. Res. Express. 8(8) (2021) 085203.

DOI: 10.1088/2053-1591/ac1d17

Google Scholar

[11] J. Yu, Y. Chang, E. Jakubczyk, B. Wang, F. Azough, R. Dorey, R. Freer, Modulation of electrical transport in calcium cobaltite ceramics and thick films through microstructure control and doping, J. Eur. Ceram. Soc. 41(9) (2021) 4859-4869.

DOI: 10.1016/j.jeurceramsoc.2021.03.044

Google Scholar

[12] K. Zhao, Y. Du, Calcium-doped ceria materials for anode of solid oxide fuel cells running on methane fuel, J. Power Sources. 347 (2017) 79-85.

DOI: 10.1016/j.jpowsour.2017.01.113

Google Scholar

[13] Y. Wang, Y. Sui, X. Wang, W. Su, Structure, transport and magnetic properties of electron-doped perovskites RxCa1−xMnO3 (R= La, Y and Ce), J. Phys: Condens Matter. 21(19) (2009) 196004.

DOI: 10.1088/0953-8984/21/19/196004

Google Scholar

[14] S. Wang, S. Fan, L. Fan, Y. Zhao, X. Ma, Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles, Environ. sci. technol. 49(8) (2015) 5021-5027.

DOI: 10.1021/es5052843

Google Scholar

[15] S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3. Ceram. Mater. Res. 19(1) (2016) 1-8.

DOI: 10.1590/1980-5373-mr-2015-0504

Google Scholar

[16] A. K. Nikumbh, R. A. Pawar, D.V. Nighot, G. S. Gugale, M.D. Sangale, M. B. Khanvilkar, A. V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method, J. Magn. Magn. Mater. 355 (2014) 201-209.

DOI: 10.1016/j.jmmm.2013.11.052

Google Scholar

[17] S. G. Kakade, Y. R. Ma, R. S. Devan, Y. D. Kolekar, C. V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9–xErxO4),  J. phys. Chem. C. 120(10) (2016) 5682-5693.

DOI: 10.1021/acs.jpcc.5b11188

Google Scholar

[18] A. A. Shah, S. Ahmad, A. Azam, Investigation of structural, optical, dielectric and magnetic properties of LaNiO3 and LaNi1−xMxO3 (M= Fe, Cr & Co; x= 5%) nanoparticles, J. Magn. Magn. Mater. 494 (2020) 165812.

DOI: 10.1016/j.jmmm.2019.165812

Google Scholar

[19] N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behaviour and magnetic properties of Mg substituted Ni–Li ferrites, J. alloys. compd. 509(27) (2011) 7543-7548.

DOI: 10.1016/j.jallcom.2011.04.126

Google Scholar

[20] A. Tripathy, S. Pramanik, A. Manna, N. F. Azrin Shah, H. N. Shasmin, Z. Radzi, N. A. Abu Osman, Synthesis and characterizations of novel Ca-Mg-Ti-Fe-oxides based ceramic nanocrystals and flexible film of polydimethylsiloxane composite with improved mechanical and dielectric properties for sensors, Sens. 16(3) (2016) 292.

DOI: 10.3390/s16030292

Google Scholar

[21] M. E. Hajlaoui, D. Essebti, K. Kamel, Dependence of the Ni0.4Zn0.6Fe2O4 spinel ferrite on frequency and temperature using impedance spectroscopy tool (2020).

DOI: 10.21203/rs.3.rs-19698/v1

Google Scholar

[22] S.B. Khan, S. Irfan, S.L. Lee, Influence of Zn+2 Doping on Ni-Based Nanoferrites;(Ni1−x ZnxFe2O4), Nanomater. 9(7) (2019) 1024.

DOI: 10.3390/nano9071024

Google Scholar