[1]
M. Fois, T. Cox, N. Ratcliffe, B. L. Costello, Rare earth doped metal oxide sensor for the multimodal detection of volatile organic compounds (VOCs), Sens. Actuators. B: Chem. 330 (2021). 129264.
DOI: 10.1016/j.snb.2020.129264
Google Scholar
[2]
E.A.R Assirey, Perovskite synthesis, properties and their related biochemical and industrial application, Saudi. Pharm. J. 27(6) (2019) 817-829.
DOI: 10.1016/j.jsps.2019.05.003
Google Scholar
[3]
Z. Zeng, Y. Xu, Z. Zhang, Z. Gao, M. Luo, Z. Yin, C. Yan, Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications, Chem. Soc. Rev. 49(4) (2020) 1109-1143.
DOI: 10.1039/c9cs00330d
Google Scholar
[4]
X. Chen, L. Xu, C. Chen, Y. Wu, W. Bi, Z. Song, H. Song, Rare earth ions doped NiOx hole transport layer for efficient and stable inverted perovskite solar cells, J. Power. Sources. 444 (2019) 227267.
DOI: 10.1016/j.jpowsour.2019.227267
Google Scholar
[5]
A. Demont, S. Hebert, J. Howing, Y. Breard, D. Pelloquin, Large oxygen nonstoichiometry in La0.77Sr3.23Co2.75C0.25O8.40+δ oxide (δ= 0, 1.3) related to n= 3 RP series. Inorg. Chem. 52(3) (2013) 1265-1274.
DOI: 10.1021/ic3017694
Google Scholar
[6]
C. Zhu, Z. Cai, B. Luo, L. Guo, L. Li, X. Wang, High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A. 8(2) (2020) 683-692.
DOI: 10.1039/c9ta10347c
Google Scholar
[7]
Q. Shen, Y. Jiang, S. Li, X. Lv, G. Yang, B. Sunden, Synthesis and experimental study of novel double perovskite Ba2NixCo2−xO6 as promising oxygen carrier materials for CO2 capture application, Int. J. Energy. Res. 44(8) (2020) 6991-6999.
DOI: 10.1002/er.5472
Google Scholar
[8]
C. Sun, J. A. Alonso, J. Bian, Recent advances in perovskite‐type oxides for energy conversion and storage applications, Adv. Energy. Mater. 11(2) (2021) 2000459.
DOI: 10.1002/aenm.202000459
Google Scholar
[9]
T. Prodromakis, C. Papavassiliou, Engineering the Maxwell–Wagner polarization effect, Appl. Surf. Sci. 255(15) 2009) 6989-6994.
DOI: 10.1016/j.apsusc.2009.03.030
Google Scholar
[10]
S. Ojha, M. S. Ali, M. Roy, S. Bhattacharya, Hopping frequency and conductivity relaxation of promising chalcogenides: AC conductivity and dielectric relaxation approaches, Mater. Res. Express. 8(8) (2021) 085203.
DOI: 10.1088/2053-1591/ac1d17
Google Scholar
[11]
J. Yu, Y. Chang, E. Jakubczyk, B. Wang, F. Azough, R. Dorey, R. Freer, Modulation of electrical transport in calcium cobaltite ceramics and thick films through microstructure control and doping, J. Eur. Ceram. Soc. 41(9) (2021) 4859-4869.
DOI: 10.1016/j.jeurceramsoc.2021.03.044
Google Scholar
[12]
K. Zhao, Y. Du, Calcium-doped ceria materials for anode of solid oxide fuel cells running on methane fuel, J. Power Sources. 347 (2017) 79-85.
DOI: 10.1016/j.jpowsour.2017.01.113
Google Scholar
[13]
Y. Wang, Y. Sui, X. Wang, W. Su, Structure, transport and magnetic properties of electron-doped perovskites RxCa1−xMnO3 (R= La, Y and Ce), J. Phys: Condens Matter. 21(19) (2009) 196004.
DOI: 10.1088/0953-8984/21/19/196004
Google Scholar
[14]
S. Wang, S. Fan, L. Fan, Y. Zhao, X. Ma, Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles, Environ. sci. technol. 49(8) (2015) 5021-5027.
DOI: 10.1021/es5052843
Google Scholar
[15]
S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3. Ceram. Mater. Res. 19(1) (2016) 1-8.
DOI: 10.1590/1980-5373-mr-2015-0504
Google Scholar
[16]
A. K. Nikumbh, R. A. Pawar, D.V. Nighot, G. S. Gugale, M.D. Sangale, M. B. Khanvilkar, A. V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method, J. Magn. Magn. Mater. 355 (2014) 201-209.
DOI: 10.1016/j.jmmm.2013.11.052
Google Scholar
[17]
S. G. Kakade, Y. R. Ma, R. S. Devan, Y. D. Kolekar, C. V. Ramana, Dielectric, complex impedance, and electrical transport properties of erbium (Er3+) ion-substituted nanocrystalline, cobalt-rich ferrite (Co1.1Fe1.9–xErxO4), J. phys. Chem. C. 120(10) (2016) 5682-5693.
DOI: 10.1021/acs.jpcc.5b11188
Google Scholar
[18]
A. A. Shah, S. Ahmad, A. Azam, Investigation of structural, optical, dielectric and magnetic properties of LaNiO3 and LaNi1−xMxO3 (M= Fe, Cr & Co; x= 5%) nanoparticles, J. Magn. Magn. Mater. 494 (2020) 165812.
DOI: 10.1016/j.jmmm.2019.165812
Google Scholar
[19]
N. Singh, A. Agarwal, S. Sanghi, Dielectric relaxation, conductivity behaviour and magnetic properties of Mg substituted Ni–Li ferrites, J. alloys. compd. 509(27) (2011) 7543-7548.
DOI: 10.1016/j.jallcom.2011.04.126
Google Scholar
[20]
A. Tripathy, S. Pramanik, A. Manna, N. F. Azrin Shah, H. N. Shasmin, Z. Radzi, N. A. Abu Osman, Synthesis and characterizations of novel Ca-Mg-Ti-Fe-oxides based ceramic nanocrystals and flexible film of polydimethylsiloxane composite with improved mechanical and dielectric properties for sensors, Sens. 16(3) (2016) 292.
DOI: 10.3390/s16030292
Google Scholar
[21]
M. E. Hajlaoui, D. Essebti, K. Kamel, Dependence of the Ni0.4Zn0.6Fe2O4 spinel ferrite on frequency and temperature using impedance spectroscopy tool (2020).
DOI: 10.21203/rs.3.rs-19698/v1
Google Scholar
[22]
S.B. Khan, S. Irfan, S.L. Lee, Influence of Zn+2 Doping on Ni-Based Nanoferrites;(Ni1−x ZnxFe2O4), Nanomater. 9(7) (2019) 1024.
DOI: 10.3390/nano9071024
Google Scholar