[1]
T. Velempini and K. Pillay, Sulphur functionalized materials for Hg(II) adsorption: A review, J. Environ. Chem. Eng., 7(5) (2019), 103350.
DOI: 10.1016/j.jece.2019.103350
Google Scholar
[2]
C. Takenaka, H. Shibata, T. Tomiyasu, S. Yasumatsu, S. Murao, Effects of forest fires on mercury accumulation in soil at the artisanal small-scale gold mining, Environ. Monit. Assess., 193(11) (2021), 699.
DOI: 10.1007/s10661-021-09394-3
Google Scholar
[3]
Natasha, M. Shahid, S. Khalid, I. Bibi, J. Bundschuh, N. K. Niazib, C. Dumat, A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment, Sci. Total Environ., 711 (2020), 134749.
DOI: 10.1016/j.scitotenv.2019.134749
Google Scholar
[4]
J. Zhou, D. Obrist, A. Dastoor, M. Jiskra, A. R. Zhou, Vegetation uptake of mercury and impacts on global cycling, Nat. Rev. Earth Environ., 2(4) (2021), 269-284.
DOI: 10.1038/s43017-021-00146-y
Google Scholar
[5]
World Health Organization, Copenhagen: Regional Office for Europe, Mercury and human health: educational course, (2021).
Google Scholar
[6]
L. Yang, Y. Zhang, F. Wang, Z. Luo, S. Guo, U. Strähle, Toxicity of mercury: Molecular evidence, Chemosphere, 245 (2020), 125586.
DOI: 10.1016/j.chemosphere.2019.125586
Google Scholar
[7]
R. Sharma, S. Raghav, M. Nair, D. Kumar, Kinetics and adsorption studies of mercury and lead by ceria nanoparticles entrapped in tamarind powder, ACS Omega, 3(11) (2018) 14606-14619.
DOI: 10.1021/acsomega.8b01874
Google Scholar
[8]
L. Wang, D. Hou, Y. Cao, Y. S. Ok, F. M. G.Tack, J. Rinklebe, D. O'Connor, Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies, Environ. Int., 134 (2020), 105281.
DOI: 10.1016/j.envint.2019.105281
Google Scholar
[9]
L. M. Levchenko, A. A. Galitsky, V. V. Kosenko, V. N. Mitkin, A. K. Sagidullin, B. M. Shavinsky, Adsorbents for mercury vapour recovery in demercuration technology, Adsorp. Sci. Technol., 32(8) (2014), 693-705.
DOI: 10.1260/0263-6174.32.8.693
Google Scholar
[10]
A. Chalkidis, D. Jampaiah, P. G.Hartley, Y. M. Sabri, S. K.Bhargava, Regenerable α-MnO2 nanotubes for elemental mercury removal from natural gas, Fuel Process. Technol., 193 (2019), 317-327.
DOI: 10.1016/j.fuproc.2019.05.034
Google Scholar
[11]
B. Li, Y. Zhang, D. Ma, Z. Shi, S. Ma, Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution, Nat. Commun., 5(1) (2014), 5537.
DOI: 10.1038/ncomms6537
Google Scholar
[12]
M. R. Awual, Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater, Chem. Eng. J., 307 (2017), 456-465.
DOI: 10.1016/j.cej.2016.08.108
Google Scholar
[13]
H. Li, F. Liu, M. Zhu, X. Feng, J. Zhang, H. Yin, Structure and properties of Co-doped cryptomelane and its enhanced removal of Pb2+ and Cr3+ from wastewater, Res. J. Environ. Sci., 34 (2015), 77-85.
DOI: 10.1016/j.jes.2015.02.006
Google Scholar
[14]
T.-M. Tran-Thuy, H.-H. Lam, Q.-T. Dang, T.-S. Phan, D.-N. Truong-Pham, D. V. Nguyen, T. Dang-Bao, Heterogeneous catalytic ozonation of acid blue 62 over nanorod Fe-OMS-2, Chem. Engi. Trans, 78 (2020), 385–390.
Google Scholar
[15]
T.-M. Tran-Thuy, T.-P. Le, T.-P. Tran, H.-H. Lam, L. Q. Nguyen, D. V. Nguyen, T. Dang-Bao, Chromium-doped cryptomelane: Mn-O debilitation and reactive enhancement in formaldehyde abatement. Mater. Lett., 305 (2021), 130777.
DOI: 10.1016/j.matlet.2021.130777
Google Scholar
[16]
T.-M. Tran-Thuy, L.-D. Nguyen, H.-H. Lam, D. V. Nguyen, T. Dang-Bao, Tuning surfactant-templates of nanorod-like cryptomelane synthesis towards vapor-phase selective oxidation of benzyl alcohol, Mater. Lett. 277 (2020), 128333.
DOI: 10.1016/j.matlet.2020.128333
Google Scholar
[17]
F.-C. Wu, R.-L.Tseng, R.-S. Juang, Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems, Chem. Eng. J., 150(2) (2009), 366-373.
DOI: 10.1016/j.cej.2009.01.014
Google Scholar
[18]
K. Zare, H. Sadegh, R. Shahryari-ghoshekandi, B. Maazinejad, V. Ali, I. Tyagi, S. Agarwal, V. K. Gupta, Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents, J. Mol. Liq., 212 (2015), 266-271.
DOI: 10.1016/j.molliq.2015.09.027
Google Scholar
[19]
Z. Liu, Y. Sun, X. Xu, J. Qu, Adsorption of Hg(II) in an aqueous solution by activated carbon prepared from rice husk using KOH activation, ACS Omega, 5(45) (2020), 29231-29242.
DOI: 10.1021/acsomega.0c03992
Google Scholar
[20]
H. Sadegh, G. A. M. Ali, A. S. H. Makhlouf, K. F. Chong, N. S.Alharbi, S. Agarwal, V. K. Gupta, MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency, J. Mol. Liq., 258 (2018), 345-353.
DOI: 10.1016/j.molliq.2018.03.012
Google Scholar