Effect of Microwave-Assisted Method on Antibiotic Adsorption Capacity of Activated Carbon from Grapefruit

Article Preview

Abstract:

In this study, we have successfully fabricated adsorbent from grapefruit peel by microwave method and applied it to CFX antibiotic treatment in water. The structural properties of the material are determined by: FTIR, SEM, BET. That the adsorption performance was best under the following conditions: pH = 4, initial CFX concentration = 80 mg/l, grapefruit peel dose = 0.5 g/L, adsorption time = 20 minutes. The model's experimental data is assessed for the appropriateness by Langmuir, Freundlich, Temkin, D-R, PSO, PFO, Elovivh, Bangham models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-63

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ahmaruzzaman, D.K. Sharma, Adsorption of phenols from wastewater, J. Colloid Interface Sci. 287 (2005) 14–24.

DOI: 10.1016/j.jcis.2005.01.075

Google Scholar

[2] D.W. Astuti, N.H. Aprilita, M. Mudasir, ADSORPTION OF THE ANIONIC DYE OF CONGO RED FROM AQUEOUS SOLUTION USING A MODIFIED NATURAL ZEOLITE WITH BENZALKONIUM CHLORIDE, Rasayan J. Chem. 13 (2020) 845–853.

DOI: 10.31788/rjc.2020.1325537

Google Scholar

[3] N. Begum, A. Noorliyana, M.F. Bari, N.A. Halif, N. Hidayah, K.R. Ahmed, Kinetic and Thermodynamic Studies on Adsorption of Copper Ions onto Pomelo Peel (Citrus grandis), Adv. Mater. Res. 795 (2013) 674–678.

DOI: 10.4028/www.scientific.net/amr.795.674

Google Scholar

[4] W. Chai, X. Liu, J. Zou, X. Zhang, B. Li, T. Yin, Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution, Carbohydr. Polym. 132 (2015) 245–251.

DOI: 10.1016/j.carbpol.2015.06.060

Google Scholar

[5] Y. Chen, Y. Liu, Y. Li, Y. Chen, Y. Wu, H. Li, S. Wang, Z. Peng, R. Xu, Z. Zeng, Novel Magnetic Pomelo Peel Biochar for Enhancing Pb(II) And Cu(II) Adsorption: Performance and Mechanism, Water. Air. Soil Pollut. 231 (2020).

DOI: 10.1007/s11270-020-04788-4

Google Scholar

[6] V.P. Dinh, T.D.T. Huynh, H.M. Le, V.D. Nguyen, V.A. Dao, N.Q. Hung, L.A. Tuyen, S. Lee, J. Yi, T.D. Nguyen, L. V. Tan, Insight into the adsorption mechanisms of methylene blue and chromium(III) from aqueous solution onto pomelo fruit peel, RSC Adv. 9 (2019) 25847–25860.

DOI: 10.1039/c9ra04296b

Google Scholar

[7] G. Dursun, H. Çiçek, A.Y. Dursun, Adsorption of phenol from aqueous solution by using carbonised beet pulp, J. Hazard. Mater. 125 (2005) 175–182.

DOI: 10.1016/j.jhazmat.2005.05.023

Google Scholar

[8] S.-W. Liew, S.-T. Ong, Removal of Basic Blue 3 Dye Using Pomelo Peel, Asian J. Chem. 26 (2014) 3808–3814.

DOI: 10.14233/ajchem.2014.15945

Google Scholar

[9] Z. Liu, K. Xing, Removal of Acid Red 88 Using Activated Carbon Produced from Pomelo Peels by KOH Activation : Orthogonal Experiment , Isotherm , and Kinetic Studies, 2021 (2021).

DOI: 10.1155/2021/6617934

Google Scholar

[10] R. Mallampati, L. Xuanjun, A. Adin, S. Valiyaveettil, Fruit Peels as Efficient Renewable Adsorbents for Removal of Dissolved Heavy Metals and Dyes from Water, ACS Sustain. Chem. Eng. 3 (2015) 1117–1124.

DOI: 10.1021/acssuschemeng.5b00207

Google Scholar

[11] S.M. Mirsoleimani-azizi, P. Setoodeh, S. Zeinali, M.R. Rahimpour, Tetracycline antibiotic removal from aqueous solutions by MOF-5: Adsorption isotherm, kinetic and thermodynamic studies, J. Environ. Chem. Eng. 6 (2018) 6118–6130.

DOI: 10.1016/j.jece.2018.09.017

Google Scholar

[12] P. Nowicki, J. Kazmierczak-Razna, R. Pietrzak, Physicochemical and adsorption properties of carbonaceous sorbents prepared by activation of tropical fruit skins with potassium carbonate, Mater. Des. 90 (2016) 579–585.

DOI: 10.1016/j.matdes.2015.11.004

Google Scholar

[13] Y.Y. Pei, J.Y. Liu, Adsorption of Pb2+ in Wastewater Using Adsorbent Derived from Grapefruit Peel, Adv. Mater. Res. 391–392 (2011) 968–972.

DOI: 10.4028/www.scientific.net/amr.391-392.968

Google Scholar

[14] Y. Ren, C. Cui, P. Wang, Pomelo peel modified with citrate as a sustainable adsorbent for removal of methylene blue from aqueous solution, Molecules. 23 (2018).

DOI: 10.3390/molecules23061342

Google Scholar

[15] R.K. Singh, S. Kumar, S. Kumar, A. Kumar, Development of parthenium based activated carbon and its utilization for adsorptive removal of p-cresol from aqueous solution, J. Hazard. Mater. 155 (2008) 523–535.

DOI: 10.1016/j.jhazmat.2007.11.117

Google Scholar

[16] P. T.K.M., S.K. Ashok Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442.

DOI: 10.1016/j.jece.2018.01.051

Google Scholar

[17] M. Torab-Mostaedi, M. Asadollahzadeh, A. Hemmati, A. Khosravi, Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies, Res. Chem. Intermed. 41 (2015) 559–573.

DOI: 10.1007/s11164-013-1210-4

Google Scholar

[18] L. Trakal, V. Veselská, I. Šafařík, M. Vítková, S. Číhalová, M. Komárek, Lead and cadmium sorption mechanisms on magnetically modified biochars, Bioresour. Technol. 203 (2016) 318–324.

DOI: 10.1016/j.biortech.2015.12.056

Google Scholar

[19] X.L. Yu, Y. He, Optimal ranges of variables for an effective adsorption of lead(II) by the agricultural waste pomelo (Citrus grandis) peels using Doehlert designs, Sci. Rep.8 (2018) 1–9.

DOI: 10.1038/s41598-018-19227-y

Google Scholar

[20] B. Zhang, Y. Wu, L. Cha, Removal of methyl orange dye using activated biochar derived from pomelo peel wastes : performance , isotherm , and kinetic studies, J. Dispers. Sci. Technol. 0 (2019) 1–12.

DOI: 10.1080/01932691.2018.1561298

Google Scholar