Progressive Freeze Concentration: Optimization of Trichlorophenol Removal in Wastewater via Response Surface Methodology

Article Preview

Abstract:

2,4,6- Trichlorophenol (TCP) is a toxic, mutagenic, and carcinogenic compound found in the emission from fossil fuel combustion, municipal waste incineration, and water disinfection for domestic usage. TCP has been classified as one of the primary pollutants that should be treated for inland water discharge. This study aims to introduce a new approach to remove the TCP in wastewater through the simple and cost-effective progressive freeze concentration (PFC) method. The effect of coolant temperature and circulation flow rate in the PFC method was investigated, and its effectiveness was characterized by calculating the effective partition constant (K) and the TCP reduction (TR). Optimisation was performed to determine the optimum condition for the TCP removal using Response Surface Methodology (RSM). The best circulation flow rate and coolant temperature for the one-variable-at-a-time (OVAT) experiment were found to be 900 rpm and -5 °C. Based on ANOVA, the PFC system was predicted to produce a low K value and high TR with temperature in the range of -4.5 °C to -5 °C and circulation flow rate in the range of 900 rpm to 1000 rpm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-22

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Samin, D.B. Janssen, Transformation and biodegradation of 1,2,3-trichloropropane (TCP), Environ Sci Pollut Res Int, 19 (2012) 3067-3078.

DOI: 10.1007/s11356-012-0859-3

Google Scholar

[2] I.A. Tan, A.L. Ahmad, B.H. Hameed, Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon, J Hazard Mater, 164 (2009) 473-482.

DOI: 10.1016/j.jhazmat.2008.08.025

Google Scholar

[3] A. Yazdanbakhsh, A. Eslami, G. Moussavi, M. Rafiee, A. Sheikhmohammadi, Photo-assisted degradation of 2, 4, 6-trichlorophenol by an advanced reduction process based on sulfite anion radical: Degradation, dechlorination and mineralization, Chemosphere, 191 (2018) 156-165.

DOI: 10.1016/j.chemosphere.2017.10.023

Google Scholar

[4] M. Zhu, J. Lu, Y. Zhao, Z. Guo, Y. Hu, Y. Liu, C. Zhu, Photochemical reactions between superoxide ions and 2,4,6-trichlorophenol in atmospheric aqueous environments, Chemosphere, 279 (2021) 130537.

DOI: 10.1016/j.chemosphere.2021.130537

Google Scholar

[5] A. Sheikhmohammadi, A. Yazdanbakhsh, G. Moussavi, A. Eslami, M. Rafiee, M. Sardar, M. Almasian, Degradation and COD removal of trichlorophenol from wastewater using sulfite anion radicals in a photochemical process combined with a biological reactor: Mechanisms, degradation pathway, optimization and energy consumption, Process Saf Environ Prot, 123 (2019) 263-271.

DOI: 10.1016/j.psep.2019.01.020

Google Scholar

[6] J. Wang, Z. Sun, Successful application of municipal domestic wastewater as a co-substrate in 2,4,6-trichlorophenol degradation, Chemosphere, 280 (2021) 130707.

DOI: 10.1016/j.chemosphere.2021.130707

Google Scholar

[7] J.E. Vuist, R. Linssen, R.M. Boom, M.A.I. Schutyser, Modelling ice growth and inclusion behaviour of sucrose and proteins during progressive freeze concentration, J. Food Eng., 303 (2021) 110592.

DOI: 10.1016/j.jfoodeng.2021.110592

Google Scholar

[8] S. Samsuri, N.A. Amran, N. Yahya, M. Jusoh, Review on Progressive Freeze Concentration Designs, Chem Eng Commun, 203 (2015) 345-363.

DOI: 10.1080/00986445.2014.999050

Google Scholar

[9] F.H. Ab. Hamid, N.A. Rahim, A. Johari, N. Ngadi, Z.Y. Zakaria, M. Jusoh, Desalination of seawater through progressive freeze concentration using a coil crystallizer, Water Sci Technol Water Supply, 15 (2015) 625-631.

DOI: 10.2166/ws.2015.019

Google Scholar

[10] S. Moharramzadeh, S.K. Ong, J.E. Alleman, K.S. Cetin, Parametric study of the progressive freeze concentration for desalination, Desal, 510 (2021) 115077.

DOI: 10.1016/j.desal.2021.115077

Google Scholar

[11] O. Miyawaki, C. Omote, T. Koyanagi, T. Sasaki, H. Take, A. Matsuda, K. Tadokoro, S. Miwa, S. Kitano, Progressive Freeze-concentration of Blueberry Juice and Its Application to Produce Blueberry Wine, in, (2017).

DOI: 10.11301/jsfe.16481

Google Scholar

[12] J. Sánchez Machado, E. Hernandez, J. M Auleda, M. Raventós, Review: Freeze Concentration Technology Applied to Dairy Products, Food Sci Technol Int, 17 (2011) 5-13.

DOI: 10.1177/1082013210382479

Google Scholar

[13] R. Fujioka, L.P. Wang, G. Dodbiba, T. Fujita, Application of progressive freeze-concentration for desalination, Desal, 319 (2013) 33-37.

DOI: 10.1016/j.desal.2013.04.005

Google Scholar

[14] F.G.F. Qin, Z. Ding, K. Peng, J. Yuan, S. Huang, R. Jiang, Y. Shao, Freeze concentration of apple juice followed by centrifugation of ice packed bed, J. Food Eng., 291 (2021) 110270.

DOI: 10.1016/j.jfoodeng.2020.110270

Google Scholar

[15] D. Krishnaiah, S.M. Anisuzzaman, A. Bono, R. Sarbatly, Adsorption of 2,4,6-trichlorophenol (TCP) onto activated carbon, J King Saud Univ Sci, (2013).

DOI: 10.1016/j.jksus.2012.10.001

Google Scholar

[16] D. Suzuki, R. Shoji, Toxicological effects of chlorophenols to green algae observed at various pH and concentration of humic acid, J. Hazard. Mater., 400 (2020) 123079.

DOI: 10.1016/j.jhazmat.2020.123079

Google Scholar

[17] N.Z. Safiei, N.N. Mohamed Nor, N. Ngadi, Z.Y. Zakaria, M. Jusoh, Progressive Freeze Concentration of Coconut Water: Effect of Coolant Temperature on Process Efficiency and Heat Transfer, Appl. Mech. Mater., (2014).

DOI: 10.4028/www.scientific.net/amm.695.447

Google Scholar

[18] N.N.M. Zain, N.K. Abu Bakar, S. Mohamad, N.M. Saleh, Optimization of a greener method for removal phenol species by cloud point extraction and spectrophotometry, Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 118 (2014) 1121-1128.

DOI: 10.1016/j.saa.2013.09.129

Google Scholar

[19] D.C. Montgomery, Design and analysis of experiments, John wiley & sons, (2017).

Google Scholar

[20] S. Samsuri, M.M.M. Bakri, Optimization of fractional crystallization on crude biodiesel purification via response surface methodology, Sep. Sci. Technol., 53 (2018) 567-572.

DOI: 10.1080/01496395.2017.1392975

Google Scholar

[21] N.A. Amran, M. Jusoh, Effect of coolant temperature and circulation flowrate on the performance of a vertical finned crystallizer, Procedia Eng, 148 (2016) 1408-1415.

DOI: 10.1016/j.proeng.2016.06.576

Google Scholar

[22] O. Miyawaki, L. Liu, Y. Shirai, S. Sakashita, K. Kagitani, Tubular ice system for scale-up of progressive freeze-concentration, J Food Eng, (2005).

DOI: 10.1016/j.jfoodeng.2004.07.016

Google Scholar

[23] F.H. Ab Hamid, S.N. Jami, Progressive Freeze Concentration for Wastewater Treatment from Food Industry, Key Eng. Mater., 797 (2019) 55-64.

DOI: 10.4028/www.scientific.net/kem.797.55

Google Scholar

[24] B.R. Albuquerque, J. Pinela, L. Barros, M.B.P.P. Oliveira, I.C.F.R. Ferreira, Anthocyanin-rich extract of jabuticaba epicarp as a natural colorant: Optimization of heat- and ultrasound-assisted extractions and application in a bakery product, Food Chem., 316 (2020) 126364.

DOI: 10.1016/j.foodchem.2020.126364

Google Scholar

[25] A. Rutherford, ANOVA and ANCOVA: a GLM approach, John Wiley & Sons, (2011).

Google Scholar

[26] A.Y. Aydar, Utilization of response surface methodology in optimization of extraction of plant materials, in: Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes, IntechOpen, (2018).

DOI: 10.5772/intechopen.73690

Google Scholar

[27] V.H. Rodrigues, M.R. de Melo, I. Portugal, C.M. Silva, Simulation and techno-economic optimization of the supercritical CO2 extraction of Eucalyptus globulus bark at industrial scale, Supercrit Fluids, (2019).

DOI: 10.1016/j.supflu.2018.11.025

Google Scholar

[28] T. Aung, S.-J. Kim, J.-B. Eun, A hybrid RSM-ANN-GA approach on optimisation of extraction conditions for bioactive component-rich laver (Porphyra dentata) extract, Food Chem., 366 (2022) 130689.

DOI: 10.1016/j.foodchem.2021.130689

Google Scholar

[29] T.K. Trinh, L.S. Kang, Response surface methodological approach to optimize the coagulation-flocculation process in drinking water treatment, Chem Eng Res Des, (2011).

DOI: 10.1016/j.cherd.2010.12.004

Google Scholar

[30] A. Ciric, B. Krajnc, D. Heath, N. Ogrinc, Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic, Food Chem. Toxicol., 135 (2020) 110976.

DOI: 10.1016/j.fct.2019.110976

Google Scholar

[31] M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965-977.

DOI: 10.1016/j.talanta.2008.05.019

Google Scholar

[32] M. Jusoh, A. Johari, N. Ngadi, Z. Zakaria, Process Optimization of Effective Partition Constant in Progressive Freeze Concentration of Wastewater, Adv. Chem. Eng., 3 (2013) 286-293.

DOI: 10.4236/aces.2013.34036

Google Scholar

[33] S. Okawa, T. Ito, A. Saito, Effect of Crystal Orientation on Freeze Concentration of Solutions, Int J Refrig, 32 (2009) 246-252.

DOI: 10.1016/j.ijrefrig.2008.06.001

Google Scholar