[1]
Y. Wen, B. Sheng, P. Li, W. Lin and D. D. Feng, Deep Color Guided Coarse-to-Fine Convolutional Network Cascade for Depth Image Super-Resolution,, in IEEE Transactions on Image Processing, vol. 28, no. 2, pp.994-1006, Feb. (2019).
DOI: 10.1109/tip.2018.2874285
Google Scholar
[2]
W. Symolon and C. H. Dagli, Single-Image Super Resolution using Convolutional Neural Network,, Procedia Computer Science, vol. 185, pp.213-222, Elsevier B. V., Jun (2021).
DOI: 10.1016/j.procs.2021.05.022
Google Scholar
[3]
Sobhan Kanti Dhara, Debashis Sen,Across-scale process similarity based interpolation for image super-resolution,Applied Soft Computing, ,Volume 81,August 2019,105508.
DOI: 10.1016/j.asoc.2019.105508
Google Scholar
[4]
X. Xue, X. Zhang, H. Li and W. Wang, Research on GAN-based Image Super-Resolution Method,, 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 2020, pp.602-605.
DOI: 10.1109/icaica50127.2020.9182617
Google Scholar
[5]
M. Cao, Z. Liu, X. Huang and Z. Shen, Research for Face Image Super-Resolution Reconstruction Based on Wavelet Transform and SRGAN,, 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2021, pp.448-451.
DOI: 10.1109/iaeac50856.2021.9390748
Google Scholar
[6]
Purab Alok Jain , Pranali K. Kosamkar,Analysis and Prediction of COVID-19 with Image Super-Resolution Using CNN and SRCNN-Based Approach,, Vol. 248, Jan 2022,pp.33-40.
DOI: 10.1007/978-981-16-4177-0_5
Google Scholar
[7]
Yitong Yan, Chuangchuang Liu, Changyou Chen, Xianfang Sun, Longcun Jin, Xiang Zhou. Fine-grained Attention and Feature-sharing Generative Adversarial Networks for Single Image Super-Resolution. arXiv preprint arXiv:1911.10773, (2019).
DOI: 10.1109/tmm.2021.3065731
Google Scholar
[8]
S. Liu et al., Infrared Image Super Resolution Using GAN With Infrared Image Prior,, 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), 2019, pp.1004-1009.
DOI: 10.1109/siprocess.2019.8868566
Google Scholar
[9]
A. A. Tandale and N. D. Kulkarni, Super-Resolution of Color Images Using CNN,, 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), 2018, pp.1-5.
DOI: 10.1109/iccons.2018.8663215
Google Scholar
[10]
N. T. Man and T. Q. Vinh, Image Super-Resolution Using Image Registration and Neural Network Based Interpolation,, 2016 International Conference on Advanced Computing and Applications (ACOMP), 2016, pp.164-167.
DOI: 10.1109/acomp.2016.032
Google Scholar
[11]
A. Horé and D. Ziou, Image Quality Metrics: PSNR vs. SSIM,, 2010 20th International Conference on Pattern Recognition, 2010, pp.2366-2369.
DOI: 10.1109/icpr.2010.579
Google Scholar
[12]
Feng Zhou, Yong Hu, Xukun Shen,Advances in Multimedia Information Processing – PCM 2018,, Springer Science and Business Media LLC, 2018, Vol. 11166.
Google Scholar
[13]
C. Ledig et al., Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network,, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.105-114.
DOI: 10.1109/cvpr.2017.19
Google Scholar
[14]
X. Zhong, Y. Wang, A. Cai, N. Liang, L. Li and B. Yan, Dual-Energy CT Image Super-resolution via Generative Adversarial Network,, 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), 2021, pp.343-347.
DOI: 10.1109/aiea53260.2021.00079
Google Scholar
[15]
Yuxin PengShi-Min HuMoncef GabboujKun ZhouMichael EladKun Xu,Image and Graphics,,2021, Volume 12888.
Google Scholar
[16]
Li Chen, Jing Tian,Depth image enlargement using an evolutionary approach,,Signal Processing: Image Communication,Volume 28, Issue 7, August 2013, Pages 745-752.
DOI: 10.1016/j.image.2013.03.005
Google Scholar
[17]
Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, Deep networks for image super-resolution with sparse prior,, in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, p.370–378.
Google Scholar
[18]
W. Dong, L. Zhang, R. Lukac, G. Shi, Sparse representation based image interpolation with nonlocal autoregressive modeling, IEEE Trans. Image Process. 22 (4) (2013) 1382–1394.
DOI: 10.1109/tip.2012.2231086
Google Scholar