[1]
Xinda Liu, Weiqing Min, Shuhuan Mei, Lili Wang, and Shuqiang Jiang,, Plant Disease Recognition: A Large-Scale Benchmark Dataset and a Visual Region and Loss Reweighting Approach, IEEE Transactions on Image Processing, Volume:30, Jan (2021).
DOI: 10.1109/tip.2021.3049334
Google Scholar
[2]
Lili Li; Shujuan Zhang; Bin Wang,, Plant Disease Detection and Classification by Deep Learning—A Review, IEEE journal article, Volume:9, (2021).
Google Scholar
[3]
Xiaia Chang; Yue Qiao; Fanfeng Meng; Chengguo Fan; Mingming Zhang,, Identification of Maize Leaf Diseases Using Improved Deep Convolutional Neural Networks, IEEE Access, Volume:6, (2018).
DOI: 10.1109/access.2018.2844405
Google Scholar
[4]
J. Arunnehru, B. S. Vidhyasagar, and H. Anwar,, Plant Leaf Diseases Recognition Using, Convolutional Neural Network, and Transfer Learning, Volume 647, March (2020).
DOI: 10.1007/978-981-15-2612-1_21
Google Scholar
[5]
NavneetKaurV.Devendran,, Novel plant leaf disease detection based on optimized segmentation and law mask feature extraction with SVM classifier, Science Direct, Dec (2020).
DOI: 10.1016/j.matpr.2020.10.901
Google Scholar
[6]
Bin Liu; Cheng Tan; Shuqin Li; Jinrong He; Hongyan Wang, A Data Augmentation Method Based on Generative Adversarial Networks for Grape Leaf Disease Identification,, published in IEEE, June (2020).
DOI: 10.1109/access.2020.2998839
Google Scholar
[7]
Leaf Disease Identification by Restructured Deep Residual Dense Network, Changjian Zhou; Sihan Zhou; Jing; Jia Song, February 2021, published in IEEE, volume 9.
DOI: 10.1109/access.2021.3058947
Google Scholar
[8]
Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning, Helong Yu; Jiawen Liu; Chengcheng Chen; Ali Asghar Heidari; Qian Zhang; Huiling Chen, volume 9, published in IEEE, October (2021).
DOI: 10.1109/access.2021.3120379
Google Scholar
[9]
Q.H. Cap, H. Tani, S. Kagiwada, H. Uga and H. Iyatomi, LASSR: Effective super-resolution method for plant disease diagnosis,, Comput. Electron. Agricult., vol. 187, Aug. (2021).
DOI: 10.1016/j.compag.2021.106271
Google Scholar
[10]
A. Almadhor, H. T. Rauf, M. I. U. Lali, R. Damaševičius, B. Alouffi, and A. Alharbi, AI-driven framework for recognition of guava plant diseases through machine learning from DSLR camera sensor based high-resolution imagery,, Sensors, vol. 21, no. 11, p.3830, Jun. (2021).
DOI: 10.3390/s21113830
Google Scholar
[11]
F. Saeed, M. A. Khan, M. Sharif, M. Mittal, L. M. Goyal, and S. Roy, Deep neural network features fusion and selection based on PLS regression with an application for crops diseases classification,, Appl. Soft Comput., vol. 103, May (2021).
DOI: 10.1016/j.asoc.2021.107164
Google Scholar
[12]
G.A. Barbedo, Factors influencing the use of deep learning for plant disease recognition,, Biosyst. Eng., vol. 172, pp.84-91, Aug. (2018).
DOI: 10.1016/j.biosystemseng.2018.05.013
Google Scholar
[13]
A. Picon, A. Alvarez-Gila, M. Seitz, A. Ortiz-Barredo, J. Echazarra, and A. Johannes, Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild,, Comput. Electron. Agricult.
DOI: 10.1016/j.compag.2018.04.002
Google Scholar
[14]
X. Zhang, Y. Qiao, F. Meng, C. Fan, and M. Zhang, Identification of maize leaf diseases using improved deep convolutional neural networks,, IEEE Access, vol. 6, pp.30370-30377, (2018).
DOI: 10.1109/access.2018.2844405
Google Scholar
[15]
Y. Lu, S. Yi, N. Zeng, Y. Liu, and Y. Zhang, Identification of rice diseases using deep convolutional neural networks,, Neurocomputing, vol. 267, pp.378-384, Dec. (2017).
DOI: 10.1016/j.neucom.2017.06.023
Google Scholar
[16]
R. Gandhi, S. Nimbalkar, N. Yelamanchili, and S. Ponkshe, Plant disease detection using CNNs and GANs as an augmentative approach,, Proc. IEEE Int. Conf. Innov. Res. Develop. (ICIRD), pp.1-5, May (2018).
DOI: 10.1109/icird.2018.8376321
Google Scholar
[17]
H. Durmuş, E.O. Güneş, and M. Kırcı, Disease detection on the leaves of the tomato plants by using deep learning,, Proc. 6th Int. Conf. Agro-Geoinformatics, pp.1-5, Aug. (2017).
Google Scholar