[1]
R.W. Ash, R.W, R.B. Heap, Oestrogen, progesterone and corticosteroid concentrations in peripheral plasma of sows during pregnancy, parturition, lactation and after weaning, J Endocrinol. 64 (1975) 141-154.
DOI: 10.1677/joe.0.0640141
Google Scholar
[2]
B. Flowers, T.C. Cantley, M.J. Martin, B.N. Day, Episodic secretion of gonadotrophins and ovarian steroids in jugular and utero-ovarian vein plasma during the follicular phase of the oestrous cycle in gilts, J.Reprod.Fertil. 91 (1991) 101-112.
DOI: 10.1530/jrf.0.0910101
Google Scholar
[3]
J. Przała, A. Grazul, T. Wiesak, A Muszyńska, L. Dusza, Steroid hormones and prolactin in porcine follicular fluid in estrous cycle and early pregnancy. Exp.Clin.Endocrinol. 86 (1985) 291-296.
DOI: 10.1055/s-0029-1210499
Google Scholar
[4]
C.A. Gray, G.A. Johnson, F.F. Bartol, B.J. Tarleton, A.A. Wiley, F.W. Bazer, T.E. Spencer, Developmental biology of uterine glands, Biol.Reprod. 65 (2001) 1311–1323.
DOI: 10.1095/biolreprod65.5.1311
Google Scholar
[5]
T.E. Spencer, F.W. Bazer, Biology of progesterone action during pregnancy recognition and maintenance of pregnancy, Front Biosci. 7 (2002) 1879–1898.
DOI: 10.2741/a886
Google Scholar
[6]
T.E. Spencer, F.W. Bazer, Uterine and placental factors regulating conceptus growth in domestic animals, J. Anim. Sci. 82 (2004) E4-E13.
Google Scholar
[7]
T.E. Spencer, G.A. Johnson, R.C. Burghardt, F.W. Bazer, Progesterone and placental hormone actions on the uterus: Insights from domestic animals, Biol.Reprod. 71 (2004) 2–10.
DOI: 10.1095/biolreprod.103.024133
Google Scholar
[8]
T. Ohtaki, M. Moriyoshi, K. Nakada, T. Nakao, Y. Sawamukai, Y, Relationships among steroid hormone levels in newborn piglets, birth weight, placental weight, vitality of offspring and litter size. Anim. Sci. J. 83 (2012) 644-649.
DOI: 10.1111/j.1740-0929.2012.01012.x
Google Scholar
[9]
J. Chłopek, P. Gilun, A. Tabecka-Lonczyńska, M. Koziorowski, S. Stefańczyk-Krzymowska, The effect of intravaginal application of estradiol and progesterone on porcine embryo development, Pol. J. Vet.Sci.11 (2008) 287-93.
Google Scholar
[10]
D.L. Dalton, J.W. Knight, Effects of exogenous progesterone and estrone on conceptus development in swine, J. Anim. Sci. 56 (1983) 1354-1361.
DOI: 10.2527/jas1983.5661354x
Google Scholar
[11]
R.A. Mege, S.H. Nasution, N. Kusumorini, W. Manalu, Growth and development of the uterus and placenta of superovulated gilts, Hayati J. Biosciences. 14 (2007) 1-6.
DOI: 10.4308/hjb.14.1.1
Google Scholar
[12]
M.T.R. Lapian, P.H. Siagian, W. Manalu, R. Priyanto, Carcass qualities of finisher pig born to superovulated sows before mating, J. Veteriner. 14 (2007) 350-357.
Google Scholar
[13]
R.A. Mege, W. Manalu, N. Kusumorini, S.H. Nasution, Effect of superovulation on piglet production, Animal Production. 8 (2006) 8-15.
Google Scholar
[14]
D.J. Barker, Adult consequences of fetal growth restriction, Clin. Obstet. Gynecol. 49, (2006) 270-283.
Google Scholar
[15]
A.L. Fowden, Endocrine regulation of fetal growth.Reprod, Fertil Dev. 7 (1995) 351–363.
DOI: 10.1071/rd9950351
Google Scholar
[16]
A.L. Fowden, A.J. Forhead, P.M. Coan, G.J. Burton, The placenta and intrauterine programming, J.Neuroendocrinol. 20 (2008) 439–450.
DOI: 10.1111/j.1365-2826.2008.01663.x
Google Scholar
[17]
A.L. Fowden, J.W. Ward, F.P.B. Wooding, A.J. Forhead, M. Constancia, Programming placental nutrient transport capacity, J. Physiol. 572 (2006) 5–15.
DOI: 10.1113/jphysiol.2005.104141
Google Scholar
[18]
G.R. Foxcroft, Reproduction in farm animals in an era of rapid genetic change: will genetic change outpace our knowledge of physiology, Reprod. Domest. Anim. 4 (2012) 313-319.
DOI: 10.1111/j.1439-0531.2012.02091.x
Google Scholar
[19]
G.R. Foxcroft, W.T. Dixon, M.K. Dyck, S. Novak, J.C. Harding, F.C. Almeida, Prenatal programming of postnatal development in the pig, Soc.Reprod.Fertil.Suppl. 66 (2009) 213-31.
DOI: 10.1530/biosciprocs.18.0028
Google Scholar
[20]
P.D. Gluckman, M.A. Hanson, C. Cooper, K.L. Thornburg, Effect of in utero and early-life conditions on adult health and disease, N. Engl. J. Med. 359 (2008) 61-73.
DOI: 10.1056/nejmra0708473
Google Scholar
[21]
A.D. Goldberg, C.D. Allis, E. Bernstein, Epigenetics: a landscape takes shape, Cell 128 (2007) 635-638.
DOI: 10.1016/j.cell.2007.02.006
Google Scholar
[22]
Z. Hochberg, R. Feil, M. Constancia, M. Fraga, C. Junien, J.C. Carel, P. Boileau, Y. Le Bouc, C.L. Deal, K. Lillycrop, R. Scharfmann, A. Sheppard, M. Skinner, M. Szyf, R.A. Waterland, D.J. Waxman, E. Whitelaw, K. Ong, K. Albertsson-Wikland, Child health, developmental plasticity, and epigenetic programming, Endocr.Rev. 32 (2011) 159-224.
DOI: 10.1210/er.2009-0039
Google Scholar
[23]
G. Berná, M.J. Oliveras-López, E. Jurado-Ruíz, J. Tejedo, F. Bedoya, B. Soria, F. Martín, Nutrigenetics and nutrigenomics insights into diabetes etiopathogenesis, Nutrients. 6 (2014) 5338-5369.
DOI: 10.3390/nu6115338
Google Scholar
[24]
H.L. Neibergs, K.A. Johnson, Alpharma Beef Cattle Nutrition Symposium: Nutrition and the genome, J. Anim. Sci. 90 (2012) 2308-2316.
DOI: 10.2527/jas.2011-4582
Google Scholar
[25]
M.A. Angel, Gil, C. Cuello, J. Sanchez-Osorio, J. Gomis, I. Parrilla, J. Vila, I. Colina, M. Diaz, J. Reixach, J.L. Vazquez, J.M. Vazquez, J. Roca, E.A. Martinez, The effects of superovulation of donor sows on ovarian response and embryo development after nonsurgical deep-uterine embryo transfer, Theriogenology. 81 (2014) 832-839.
DOI: 10.1016/j.theriogenology.2013.12.017
Google Scholar
[26]
J.J. Arlaud, L. Baker, R.L. Williams, A.J. French, Oestrous synchronization, ovarian superovulation and intraspecific transfers from a closed breeding colony of inbred SLA miniature pigs, Reprod Domest Anim. 45 (2010) 951-958.
DOI: 10.1111/j.1439-0531.2009.01467.x
Google Scholar
[27]
W. Hazeleger, E.G. Bouwman, J.P. Noordhuizen, B. Kemp, Effect of superovulation induction on embryonic development on day 5 and subsequent development and survival after nonsurgical embryo transfer in pigs, Theriogenology. 53 (2000) 1063-1070.
DOI: 10.1016/s0093-691x(00)00252-1
Google Scholar
[28]
R.D. Geisert, J.V. Yelich, Regulation of conceptus development and attachment in pigs, J.Reprod.Fertil. Suppl. 52 (1997) 133-149.
Google Scholar
[29]
E.E.D.A. Moussad, M.A.E. Rageh, A.K. Wilson, R.D. Geisert, D.R. Brigstock, Temporal and spatial expression of connective tissue growth factor (CCN2; CTGF) and transforming growth factor b type 1 (TGF-b1) at the utero–placental interface during early pregnancy in the pig, J.Clin.Pathol: Mol.Pathol. 55 (2002) 186–192.
DOI: 10.1136/mp.55.3.186
Google Scholar
[30]
L. Zhu, J.W. Pollard, Estradiol-17beta regulates mouse uterine epithelial cell proliferation through insulin-like growth factor 1 signaling, Proc. Natl. Acad. Sci. 104 (2007) 15847-15851.
DOI: 10.1073/pnas.0705749104
Google Scholar
[31]
G. Song, D.W. Bailey, K.A. Dunlap, R.C. Burghardt, T.E. Spencer, F.W. Bazer, G.A. Johnson, Cathepsin B, cathepsin L, and cystatin C in the porcine uterus and placenta: potential roles in endometrial/placental remodeling and in fluid-phase transport of proteins secreted by uterine epithelia across placental areolae, Biol. Reprod. 82 (2010) 854-864.
DOI: 10.1095/biolreprod.109.080929
Google Scholar
[32]
F.W. Bazer, W.W. Thatcher, Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2α by the uterine endometrium, Prostaglandins. 14 (1977) 397-400.
DOI: 10.1016/0090-6980(77)90185-x
Google Scholar
[33]
M. Frank, F.W. Bazer, W.W. Thatcher, C.F. Wilcox, A study of prostaglandin F2alpha as the luteolysin in swine: III. Effects of estradiol valerate on prostaglandin F, progestins, estrone and estradiol concentrations in the utero-ovarian vein of nonpregnant gilts, Prostaglandins. 14 (1977) 1183-1196.
DOI: 10.1016/0090-6980(77)90295-7
Google Scholar
[34]
A.J. Ziecik, A. Waclawik, M. Bogacki, Conceptus signals for establishment and maintenance of pregnancy in pigs–lipid signaling system, Exp.Clin.Endocrinol.Diabetes. 116 (2008) 443-449.
DOI: 10.1055/s-2008-1042405
Google Scholar
[35]
G. Song, K.A. Dunlap, J. Kim, D.W. Bailey, T.E. Spencer, R.C. Burghardt, G.A. Johnson, F.W. Bazer, Stanniocalcin 1 is a luminal epithelial marker for implantation in pigs regulated by progesterone and estradiol, Endocrinology. 150 (2009) 936-945.
DOI: 10.1210/en.2008-1026
Google Scholar
[36]
D.W. Bailey, K.A. Dunlap, J.W. Frank, D.W. Erikson, B.G. White, F.W. Bazer, R.C. Burghardt, G.A. Johnson, Effects of long-term progesterone on developmental and functional aspects of porcine uterine epithelia and vasculature: progesterone alone does not support development of uterine glands comparable to that of pregnancy, Reproduction. 140 (2010) 583–594.
DOI: 10.1530/rep-10-0170
Google Scholar
[37]
N.J. Biensen, M.F. Haussmann, D.C. Lay, L.L. Christian, S.P. Ford, The relationship between placental and piglet birth weights and growth traits, Anim. Sci. 68 (1999) 709–715.
DOI: 10.1017/s1357729800050736
Google Scholar
[38]
N.J. Biensen, M.E. Wilson, S.P. Ford, The impacts of uterine environment and fetal genotype on conceptus size and placental vascularity during late gestation in pigs, J. Anim. Sci. 77 (1999) 954-959.
DOI: 10.2527/1999.774954x
Google Scholar
[39]
L.P. Reynolds, D.A. Redmer, Utero-placental vascular development and placental function, J. Anim. Sci. 73 (1995) 1839-1851.
DOI: 10.2527/1995.7361839x
Google Scholar
[40]
A.C. Enders, T.N. Blankenship, Comparative placental structure, Adv. Drug. Deliv. Rev. 38 (1999) 3-15.
Google Scholar
[41]
R. Roehe, E. Kalm, Estimation of genetic and environmental risk factors associated with pre-weaning mortality in piglets using generalized linear mixed models, Anim. Sci. 70 (2000) 227–240.
DOI: 10.1017/s1357729800054692
Google Scholar
[42]
M. Tuchscherer, B. Puppe, A. Tuchscherer, U. Tiemann, Early identification of neonates at risk: Traits of newborn piglets with respect to survival, Theriogenology. 54 (2000) 371–388.
DOI: 10.1016/s0093-691x(00)00355-1
Google Scholar
[43]
P.H. Campos, B.A. Silva, J.L. Donzele, R.F. Oliveira, E.F. Knol, Effects of sow nutrition during gestation on within-litter birth weight variation: a review, Animal. 6 (2012) 797-806.
DOI: 10.1017/s1751731111002242
Google Scholar
[44]
E. Frimawaty, W. Manalu, Milk yield and lactose synthetase activity in themammary glands of superovulated ewes, Small Ruminant Research. 33 (1999) 271-278.
DOI: 10.1016/s0921-4488(99)00033-4
Google Scholar
[45]
Adriani, A. Sudono, T. Sutardi, W. Manalu, I.K. Sutama, The effect of superovulation prior to mating and zinc supplementation on milk yield in Etawah-grade does, Animal Production. 6 (2004) 86-94.
Google Scholar