Metal Analysis of Pb, Fe, Cd with Activated Carbon Material in Tondano Watershed, East Kombos Area, Manado City

Article Preview

Abstract:

This study aimed to determine the characteristics of activated charcoal from mangroves resulting from pyrolysis and activation with 3M KCl using Fourier Transform Infra-Red (FTIR), X-Ray Diffraction (XRD) and ash content analysis and to determine the ratio of Pb, Fe and Cd metal content in river water before and after filtered with activated charcoal. The results of the FTIR test for charcoal from mangroves resulting from pyrolysis and activation with KCl showed the presence of O-H, C=C, C-H, C-N and C-Cl groups as additional groups that appeared after the activation process. The results of XRD analysis show that the lattice parameter (α) can be calculated, namely in pyrolysis mangrove charcoal = 5.79 and charcoal from pyrolysis and activation mangrove wood = 5.88. The results show that there is a change in the distance between the crystal planes after activation, with the known value of, the results of d-spacing 3 strong peaks are 3.39 , 2.94 and 5.88 . The results of the analysis of the ash content are 15.4% and exceed the maximum percentage that has been determined, because there are still impurities attached to the carbon surface. The results of the analysis using Atomic Absorbtion Spectrophotometry (AAS) showed that there were differences in the levels of Pb, Fe and Cd in river water before and after being filtered with activated charcoal. There was a decrease in Pb levels from points 1,2 and 3 as much as 73%, 49% and 55.23%. Meanwhile, Fe metal decreased from points 1, 2 and 3 as much as 58%, 66% and 81%. And on Cd there was a decrease of 44%, 61% and 92%. From these percentage results, activated charcoal from mangroves can be said to be effective because it can absorb metals in river water. Pb metal in river water in East Kombos Manado City has passed the concentration specified in Government Regulation of the Republic of Indonesia No. 22 of 2021, Class II Water Quality Standards.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-81

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Fitriani, R. Ediati, Effect of KCl addition on KF zeolite synthesis directly from blitar kaolin, Pomits Journal of Science and Arts. 2 (2014) 1-11.

Google Scholar

[2] A. Rahmawati, Efisiensi filter pasir-zeolit dan filter pasir-arang tempurung kelapa dalam rangkaian unit pengolahan air untuk mengurangi kandungan mangan dari dalam air, Seminar Internasional Hasil-Hasil Penelitian. (2009) 1-10.

DOI: 10.29238/sanitasi.v9i1.71

Google Scholar

[3] A. Setiabudi, H. Rifan, A. Muzakir, Karakterisasi material: Prinsip dan aplikasinya dalam penelitian kimia, UPI Press, Bandung, 2012.

Google Scholar

[4] A. Suprianto, Alimuddin, Bohari, Analisis logam Fe, Cu, Pb dan Zn dalam minyak pelumas baru dan bekas menggunakan x-ray fluorescence, Jurnal Atomik. 3 (2018) 13-17.

Google Scholar

[5] E. Sahara, W.S. Dwijani, I.P.A.S. Mahardika, Pembuatan dan karakterisasi arang aktif dari batang tanaman gumitir (Tagetes erecta) yang diaktivasi dengan H3PO4, Jurnal Kimia. 1 (2017) 1-9.

DOI: 10.24843/jchem.2017.v11.i01.p01

Google Scholar

[6] I. Priambodo, A. Alhamidi, I. Kustiningsih, Pengaruh konsentrasi larutan KOH, waktu tahan dan temperatur aktivasi kimia pada pembuatan karbon aktif dari bulu ayam untuk pengembangan hidrogen storage, Jurnal Furnace. 2 (2016) 1-10.

DOI: 10.14710/rotasi.21.1.16-22

Google Scholar

[7] K.F.A. Kamarati, A.M. Ivanhoe, M. Sumaryono, Heavy metal content iron (Fe), lead (Pb) and manganese (Mn) in The water of the santan river, Journal of Dipterocarp Ecosystem Research. 4 (2018) 49-86.

Google Scholar

[8] J. Bambang, Miscellaneous chemistry: All about science and its applications, FTIR instruments and FTIR spectra reading, 2011.

Google Scholar

[9] M. Turmuzi, A. Syaputra, Pengaruh suhu dalam pembuatan karbon aktif dari kulit salak dengan impregnasi asam fosfat (H3PO4), Jurnal Teknik Kimia. 4 (2015) 42-46.

DOI: 10.32734/jtk.v4i1.1459

Google Scholar

[10] P. Previanti, H. Sugiani, U. Pratomo, Sukrido, Daya serap dan karakterisasi arang aktif tulang sapi yang teraktivasi natrium karbonat terhadap logam tembaga, Chimica et Natura Acta. 3 (2015) 48-53.

DOI: 10.24198/cna.v3.n2.9182

Google Scholar

[11] S. Mudaim, S. Hidayat, Risdiana, Analisis proksimat karbon kulit kemiri (Aleurites moluccana) dengan variasi suhu karbonasi, Jurnal Ilmu dan Inovasi Fisika. 5 (2021) 157-163.

DOI: 10.24198/jiif.v5i2.35056

Google Scholar

[12] Standar Nasional Indonesia (SNI) 01-1683-1989, Arang kayu, Balai Standarisasi Nasional, n.d.

Google Scholar

[13] Standar Nasional Indonesia (SNI) 6989.59:2008, Metoda pengambilan contoh air limbah, Balai Standarisasi Nasional, n.d.

Google Scholar

[14] Standar Nasional Indonesia (SNI) 6989-84:2019, Cara uji kadar logam terlarut dan logam total secara spektrometri serapan atom, Balai Standarisasi Nasional, n.d.

Google Scholar

[15] T. Phriwanrat, Adding value to mangrove charcoal debris from mangrove charcoal industry. International Journal of Management and Applied Science. 2 (2016) 76-79.

Google Scholar

[16] Y. Meisrilestari, Khomaini, Rahmat, Wijayanti, Hesty, Pembuatan arang aktif dari cangkang kelapa sawit dengan aktivasi secara fisika, kimia dan kimia-fisika, Konversi. 2 (2013) 46-51.

DOI: 10.20527/k.v2i1.136

Google Scholar

[17] Y. Taufantri, Irdhawati, I.R. Ayu, A. Asih, Sintesis dan karakterisasi grafena dengan metode reduksi grafit oksida menggunakan pereduksi Zn, Jurnal Kimia Valensi. 2 (2016) 17-23.

DOI: 10.15408/jkv.v2i1.2233

Google Scholar