Design and Simulation of Grid Connected Inverters for Solar Photovoltaic Applications

Article Preview

Abstract:

Solar photovoltaic (SPV) systems have become predominant in recent years and are beingwidely used as additional power supply to enhance power availability into the utility grid. Researchers have begun to explore more into the field of renewable energy sources (RES). Even though RES has environmental advantages, its unpredictable and intermittent nature, lack of proper technology, and low production efficiency has prevented RES to be a conventional energy source. Solar photovoltaic (SPV) systems produce electrical energy from solar energy. A solar panel converts the solar energy to DC electrical energy, after which a power inverter is used in order to convert DC power obtained from solar energy to AC power which can be fed to the grid. While feeding power from inverter to the grid, the synchronization of inverter output signal to that of the grid signal is necessary, without which failures and faults can occur in the grid which can damage electrical appliances. In the present work, simulation of a three-phase H-bridge voltage source inverter (VSI) is designed in MATLAB/Simulink platform. An LC filter is used to reduce the harmonic content of the inverter output. A synchronization technique is also developed for grid interconnection. A MULTISIM simulation model of a single-phase inverter along with an LC filter is prepared and finally a hardware model is fabricated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-172

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kumar, A., Gupta, N., & Gupta, V. (2017). A comprehensive review on grid-tied solar photovoltaic system. Journal of Green Engineering, 7(1), 213-254.

Google Scholar

[2] Kavya Santhoshi, B., Mohana Sundaram, K., Padmanaban, S., Holm-Nielsen, J. B., & KK, P. (2019). Critical review of PV grid-tied inverters. Energies, 12(10), 1921.

DOI: 10.3390/en12101921

Google Scholar

[3] Latif, T., Rahman, F. N., Razzak, M. A., & Haque, M. A. (2013, December). Design & analysis of a sine wave inverter using forward converter and T-LCLC immittance conversion circuit. In 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) (pp.1-6). IEEE.

DOI: 10.1109/aeect.2013.6716462

Google Scholar

[4] Akhikpemelo, A., Matsunde, P., &Ebenso, F. P. (2016). Simulation of Inverter Circuit Using Multism and Proteus. Continental J. Engineering Sciences, 11(2), 1-11.

Google Scholar

[5] Shema, S. S., Daut, I., Syafawati, A. N., Irwanto, M., &Shatri, C. (2011, June). Simulation of push-pull inverter for photovoltaic applications via Multisim. In 2011 5th International Power Engineering and Optimization Conference (pp.103-106). IEEE.

DOI: 10.1109/peoco.2011.5970435

Google Scholar

[6] Ghanmare, R. U., Palpankar, P. M., Dutta, A. A., & Damle, N. S. (2015). Microcontroller based three phase inverter. International Journal on Recent and Innovation Trends in Computing and Communication, 3(3), 1367-1370.

DOI: 10.17762/ijritcc2321-8169.1503101

Google Scholar

[7] Hossain, M. J., Hasan, M. R., Hossain, M., & Islam, M. R. (2014, May). Design and implementation of a grid connected single phase inverter for photovoltaic system. In 2014 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET) (pp.1-6). IEEE.

DOI: 10.1109/icdret.2014.6861681

Google Scholar

[8] Xu, J., & Han, K. (2016, July). The single-phase inverter design for photovoltaic system. In 2016 International Symposium on Computer, Consumer and Control (IS3C) (pp.341-344). IEEE.

DOI: 10.1109/is3c.2016.95

Google Scholar

[9] Shangguan, S. J. (2018, September). Single-Phase Sine Wave Frequency Inverter Power Supply. In Journal of Physics: Conference Series (Vol. 1087, No. 4, p.042004). IOP Publishing.

DOI: 10.1088/1742-6596/1087/4/042004

Google Scholar

[10] Haider, R., Alam, R., Yousuf, N. B., & Salim, K. M. (2012, May). Design and construction of single phase pure sine wave inverter for photovoltaic application. In 2012 International Conference on Informatics, Electronics & Vision (ICIEV) (pp.190-194). IEEE.

DOI: 10.1109/iciev.2012.6317332

Google Scholar

[11] Rizqiawan, A., Hadi, P., & Fujita, G. (2019). Development of grid-connected inverter experiment modules for microgrid learning. Energies, 12(3), 476.

DOI: 10.3390/en12030476

Google Scholar

[12] Kavitha, A., Kumar, N. S., & Vanaja, N. (2016, March). Design and control of grid synchronization of renewable energy sources. In 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT) (pp.1-8). IEEE.

DOI: 10.1109/iccpct.2016.7530115

Google Scholar

[13] Mnati, M. J., Bozalakov, D. V., & Van den Bossche, A. (2018). A new synchronization technique of a three-phase grid tied inverter for photovoltaic applications. Mathematical Problems in Engineering, 2018.

DOI: 10.1155/2018/7852642

Google Scholar

[14] Bikorimana, J. M. V., Mnati, M. J., & Van den Bossche, A. (2017). Frequency synchronization of a single-phase grid-connected DC/AC inverter using a double integration method. Automatika, 58(2), 141-146.

DOI: 10.1080/00051144.2017.1372122

Google Scholar

[15] Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A review of single-phase grid-connected inverters for photovoltaic modules. IEEE transactions on industry applications, 41(5), 1292-1306.

DOI: 10.1109/tia.2005.853371

Google Scholar

[16] Wu, Y. K., Lin, J. H., & Lin, H. J. (2017). Standards and guidelines for grid-connected photovoltaic generation systems: A review and comparison. IEEE Transactions on Industry Applications, 53(4), 3205-3216.

DOI: 10.1109/tia.2017.2680409

Google Scholar

[17] O'Rourke, C. J., Qasim, M. M., Overlin, M. R., & Kirtley, J. L. (2019). A geometric interpretation of reference frames and transformations: dq0, clarke, and park. IEEE Transactions on Energy Conversion, 34(4), 2070-2083.

DOI: 10.1109/tec.2019.2941175

Google Scholar