[1]
Rubaai A, Kotaru R, Online identification and control of a DC motor using learning adaptation of neural networks. Ind Appl IEEE Trans 36(3):935–942; (2000)
DOI: 10.1109/28.845075
Google Scholar
[2]
Yedamale P, Brushless DC (BLDC) Motor fundamentals. Microchip Technology Inc. 20:3–15; (2008)
Google Scholar
[3]
Shi Y, Eberhart RC, A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation, Anchorage, Alaska. https://doi.org/10.1109/ICEC.1998.699146; (2018)
DOI: 10.1109/icec.1998.699146
Google Scholar
[4]
Dutta P, Mahato SN, Design of mathematical model and performance analysis of BLBLDC motor. IEEE Int Conf Control Instrum Energy Commun India. https://doi.org/10.1109/CIEC.2014.6959130; (2020)
DOI: 10.1109/ciec.2014.6959130
Google Scholar
[5]
Fogel DB, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Press Series on Computational Intelligence IEEE, 3rd Edition: 128-138; (2016)
Google Scholar
[6]
Ziegler G, Nichols NB, Optimum settings for automatic controllers. Trans ASME 64:759–768; (1942)
DOI: 10.1115/1.4019269
Google Scholar
[7]
Zhang L "Simplex method based optimal design of PID controller." Inform Control 33:376–379; (2004)
Google Scholar
[8]
Thomas Neenu, Poongodi Dr P, Position control of DC motor using genetic algorithm based PID controller. Proceedings of the World Congress on Engineerin; (2009)
Google Scholar
[9]
Kim Dong Hwa, Jin Ill Park, Intelligent PID controller tuning of AVR system using GA and PSO. Springer-Verlag Berlin Heidelberg: ICIC, Part II, LNCS 3645: 366-375. https://doi.org/10.1007/1153835638; (2005)
DOI: 10.1007/11538356_38
Google Scholar
[10]
Venkateshwara Rao D, Suresh Kumar B, Varun Raj D, Speed control of BLDC motor with PI controller and PWM technique for antenna's positioner; (2020)
DOI: 10.1007/978-3-030-32150-5_43
Google Scholar
[11]
Daya FJL , Shyam A, A comparative study on the speed response of BLDC motor using conventional PI controller, ant windup PI controller and fuzzy controller, International Conference on Control Communication and Computing (ICCC): https://doi.org/10.1109/ICCC.2013.6731626; (2019)
DOI: 10.1109/iccc.2013.6731626
Google Scholar
[12]
K Ang, G Chong, Y Li, PID control system analysis, design, and technology. Control System Technology IEEE Transaction on, 13(4): 559 576; (2020)
DOI: 10.1109/tcst.2005.847331
Google Scholar
[13]
Kennedy J, Eberhart RC, Particle swarm optimization. Proc. IEEE International Conference on Neural Networks, Perth, Australia, IEEE Service Center, Piscataway, NJ: 1942- 1948. https://doi.org/10.1109/ICNN.1995.488968; (2021)
DOI: 10.1109/icnn.1995.488968
Google Scholar
[14]
Bianchi N, Bolognani S, Jang JH, Sul SK, Comparison of PM motor structures and sensor less control techniques for zero-speed rotor position detection. Power Electron IEEE Trans 22(6):2466–2475; (2016)
DOI: 10.1109/tpel.2007.904238
Google Scholar
[15]
Zarringhalami M, Hakimi S, Javadi M, Optimal regulation of STATCOM controllers and PSS parameters using hybrid particle swarm optimization, IEEE conference. https://doi.org/10.1109/ICHQP.2010.5625436; (2019)
DOI: 10.1109/ichqp.2010.5625436
Google Scholar
[16]
Kennedy J. Swarm Intelligence. In: Zomaya A.Y. (eds) Handbook of Nature-Inspired and Innovative Computing. Springer, Boston, MA. https://doi.org/10.1007/0-387-27705-6_6; (2019)
Google Scholar
[17]
Eberhart R, Shi Y, Kennedy J, Swarm intelligence. Elsevier. https://doi.org/10.1016/B978-1-55860-595-4.X5000-1; (2019)
Google Scholar
[18]
Gaing ZL, A particle swarm optimization approach for optimum design of PID controller in AVR system. Energy Convers IEEE Trans 19(2):384–391; (2018)
DOI: 10.1109/tec.2003.821821
Google Scholar
[19]
Panda S, Padhy N, Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Int J Appl Soft Comput 8(4):1418–1427; (2018)
DOI: 10.1016/j.asoc.2007.10.009
Google Scholar
[20]
Shi, Y, Eberhart RC, "Empirical Study of Particle Swarm Optimization." Proceedings IEEE: 1945 –1950. https://doi.org/10.1109/CEC.1999.785511; (2019)
Google Scholar
[21]
Mirjalili Seyedali, Mirjalili Seyed Mohammad, Lewis Andrew, Grey wolf optimizer. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2013.12.007; (2020)
Google Scholar
[22]
Potnuru D, Tummala ASLV, Grey wolf optimization-based improved closed-loop speed control for a BLDC motor drive. In: Satapathy S, Bhateja V, Das S (eds) Smart intelligent computing and applications smart innovation, systems and technologies. Springer, Singapore; (2019)
DOI: 10.1007/978-981-13-1921-1_14
Google Scholar
[23]
Muniraj M, Arulmozhiyal R, Kesavan D, An improved self-tuning control mechanism for BLDC motor using grey wolf optimization algorithm. In: Bindhu V, Chen J, Tavares J (eds) International conference on communication, computing and electronics systems lecture notes in electrical engineering. Springer, Singapore; (2020)
DOI: 10.1007/978-981-15-2612-1_30
Google Scholar
[24]
Zitzler Eckart, Simon Künzli, Indicator-based selection in multiobjective search parallel problem solving from nature-PPSN VIII. Springer, Berlin Heidelbergss; (2014)
DOI: 10.1007/978-3-540-30217-9_84
Google Scholar
[25]
Shamseldin MA, EL-Samahy, AA, Speed control of BLDC motor by using PID control and self-tuning fuzzy PID controller," 15th International workshop on research and education in mechatronics (REM), El Gouna pp.1-9, https://doi.org/10.1109/REM.2014.6920443; (2019)
DOI: 10.1109/rem.2014.6920443
Google Scholar