[1]
Peng Liu, Liping Di, Qian Du, and Lizhe Wang. Remote sensing big data: Theory, methods and applications, 2018.
Google Scholar
[2]
Decheng Zhou, Jingfeng Xiao, Stefania Bonafoni, Christian Berger, Kaveh Deilami, Yuyu Zhou, Steve Frolking, Rui Yao, Zhi Qiao, and Jos ́e A Sobrino. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 11(1):48, 2018.
DOI: 10.3390/rs11010048
Google Scholar
[3]
Arthur P Cracknell. The development of remote sensing in the last 40 years, 2018.
Google Scholar
[4]
MVK Sivakumar. Satellite remote sensing and gis applications in agricultural meteorology, 2003.
Google Scholar
[5]
Shefali Aggarwal. Principles of remote sensing. Satellite remote sensing and GIS applications in agricultural meteorology, 23(2):23–28, 2004.
Google Scholar
[6]
Syed Agha Hassnain Mohsan, Muhammad Asghar Khan, Fazal Noor, Insaf Ullah, and Mohammed H Alsharif. Towards the unmanned aerial vehicles (uavs): A comprehensive review. Drones, 6(6):147, 2022.
DOI: 10.3390/drones6060147
Google Scholar
[7]
Hafiz Suliman Munawar, Ahmed WA Hammad, and S Travis Waller. Remote sensing methods for flood prediction: A review. Sensors, 22(3):960, 2022.
DOI: 10.3390/s22030960
Google Scholar
[8]
Arnab Kumar Saha, Jayeeta Saha, Radhika Ray, Sachet Sircar, Subhojit Dutta, Soummyo Priyo Chattopadhyay, and Himadri Nath Saha. Iot-based drone for improvement of crop quality in agricultural field. In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pages 612–615. IEEE, 2018.
DOI: 10.1109/ccwc.2018.8301662
Google Scholar
[9]
Matt Miguel-Luiz Montemayor, Jay-Ar Montillana, Anthony James Bautista, and Eugenia Zhuo. Development of real-time remote sensor data transmission system for uav. In 2022 8th International Conference on Control, Automation and Robotics (ICCAR), pages 369–374. IEEE, 2022.
DOI: 10.1109/iccar55106.2022.9782631
Google Scholar
[10]
Daniele Palossi, Nicky Zimmerman, Alessio Burrello, Francesco Conti, Hanna M ̈uller, Luca Maria Gambardella, Luca Benini, Alessandro Giusti, and J ́erˆome Guzzi. Fully onboard aipowered human-drone pose estimation on ultralow-power autonomous flying nanouavs. IEEE Internet of Things Journal, 9(3):1913–1929, 2021.
DOI: 10.1109/jiot.2021.3091643
Google Scholar
[11]
Saeed Hamood Alsamhi, Alexey V Shvetsov, Santosh Kumar, Jahan Hassan, Mohammed A Alhartomi, Svetlana V Shvetsova, Radhya Sahal, and Ammar Hawbani. Computing in the sky: A survey on intelligent ubiquitous computing for uav-assisted 6g networks and industry 4.0/5.0. Drones, 6(7):177, 2022.
DOI: 10.3390/drones6070177
Google Scholar
[12]
Mary A Pagnutti, Robert E Ryan, Maxwell J Gold, Ryan Harlan, Edward Leggett, James F Pagnutti, et al. Laying the foundation to use raspberry pi 3 v2 camera module imagery for scientific and engineering purposes. Journal of Electronic Imaging, 26(1):013014, 2017.
DOI: 10.1117/1.jei.26.1.013014
Google Scholar
[13]
Alvaro G ́omez, Gregory Randall, Gabriele Facciolo, and Rafael Grompone von Gioi. An experimental comparison of multi-view stereo approaches on satellite images. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 844–853, 2022.
DOI: 10.1109/wacv51458.2022.00078
Google Scholar
[14]
Fei Wang, Shiqi Yao, Haowen Luo, and Bo Huang. Estimating high-resolution pm2. 5 concentrations by fusing satellite aod and smartphone photographs using a convolutional neural network and ensemble learning. Remote Sensing, 14(6): 1515, 2022.
DOI: 10.3390/rs14061515
Google Scholar
[15]
Vyacheslav Kharchenko, Ihor Kliushnikov, Andrzej Rucinski, Herman Fesenko, and Oleg Illiashenko. Uav fleet as a dependable service for smart cities: Model-based assessment and application. Smart Cities, 5(3):1151–1178, 2022.
DOI: 10.3390/smartcities5030058
Google Scholar
[16]
Faris A Almalki and Ben Othman Soufiene. Modifying hata-davidson propagation model for remote sensing in complex environments using a multifactional drone. Sensors, 22(5):1786, 2022.
DOI: 10.3390/s22051786
Google Scholar
[17]
Xiaohu Dong, Yao Qin, Yinghui Gao, Ruigang Fu, Songlin Liu, and Yuanxin Ye. Attention-based multi-level feature fusion for object detection in remote sensing images. Remote Sensing, 14(15):3735, 2022.
DOI: 10.3390/rs14153735
Google Scholar
[18]
Guoxu Liu, Joseph Christian Nouaze, Philippe Lyonel Touko Mbouembe, and Jae Ho Kim. Yolo-tomato: A robust algorithm for tomato detection based on yolov3. Sensors, 20(7): 2145, 2020.
DOI: 10.3390/s20072145
Google Scholar
[19]
Jing Li, Jinan Gu, Zedong Huang, and Jia Wen. Application research of improved yolo v3 algorithm in pcb electronic component detection. Applied Sciences, 9(18):3750, 2019.
DOI: 10.3390/app9183750
Google Scholar
[20]
Halil Murat ̈Unver and Enes Ayan. Skin lesion segmentation in dermoscopic images with combination of yolo and grabcut algorithm. Diagnostics, 9(3):72, 2019.
DOI: 10.3390/diagnostics9030072
Google Scholar
[21]
Saad Mohammad Alkentar, B Alsahwa, A Assalem, and D Karakolla. Practical comparation of the accuracy and speed of yolo, ssd and faster rcnn for drone detection. Journal of Engineering, 27(8):19–31, 2021.
DOI: 10.31026/j.eng.2021.08.02
Google Scholar
[22]
Yuzhen Zhang, Jingjing Liu, and Wenjuan Shen. A review of ensemble learning algorithms used in remote sensing applications. Applied Sciences, 12 (17): 8654, 2022.
DOI: 10.3390/app12178654
Google Scholar
[23]
Sudha Ellison Mathe, Mamatha Bandaru, Hari Kishan Kondaveeti, Suseela Vappangi, and G Sanjiv Rao. A survey of agriculture applications utilizing raspberry pi. In 2022 International Conference on Innovative Trends in Information Technology (ICITIIT), pages 1-7. IEEE, 2022.
DOI: 10.1109/icitiit54346.2022.9744152
Google Scholar
[24]
Aria Bisma Wahyutama and Mintae Hwang. Yolo-based object detection for separate collection of recyclables and capacity monitoring of trash bins. Electronics, 11(9):1323, 2022.
DOI: 10.3390/electronics11091323
Google Scholar
[25]
Deniss Brod ̧nevs. Development of a flexible software solution for controlling unmanned air vehicles via the internet. Transport and Aerospace Engineering, 6(1):37–43, 2018.
DOI: 10.2478/tae-2018-0005
Google Scholar
[26]
Adel Ammar, Anis Koubaa, Mohanned Ahmed, and Abdulrahman Saad. Aerial images processing for car detection using convolutional neural networks: Comparison between faster rcnn and yolov3. arXiv preprint arXiv:1910.07234, 2019.
DOI: 10.20944/preprints201910.0195.v1
Google Scholar
[27]
NS Artamonov and PY Yakimov. Towards real-time traffic sign recognition via yolo on a mobile gpu. In Journal of Physics: Conference Series, volume 1096, page 012086. IOP Publishing, 2018.
DOI: 10.1088/1742-6596/1096/1/012086
Google Scholar
[28]
Douglas Henke dos Reis, Daniel Welfer, Marco Antonio de Souza Leite Cuadros, and Daniel Fernando Tello Gamarra. Object recognition software using rgbd Kinect images and the yolo algorithm for mobile robot navigation. In International Conference on Intelligent Systems Design and Applications, pages 255–263. Springer, 2019.
DOI: 10.1007/978-3-030-49342-4_25
Google Scholar
[29]
Yang-Lang Chang, Amare Anagaw, Lena Chang, Yi Chun Wang, Chih-Yu Hsiao, and Wei-Hong Lee. Ship detection based on yolov2 for sar imagery. Remote Sensing, 11(7):786, 2019.
DOI: 10.3390/rs11070786
Google Scholar
[30]
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016.
DOI: 10.1109/cvpr.2016.91
Google Scholar