[1]
Azad, N. M., & Samarakoon, S. S. M. (2021). Utilization of industrial by-products/waste to manufacture geopolymer cement/concrete. Sustainability, 13(2), 873.
DOI: 10.3390/su13020873
Google Scholar
[2]
Almalkawi, A. T., Balchandra, A., & Soroushian, P. (2019). Potential of using industrial wastes for production of geopolymer binder as green construction materials. Construction and Building Materials, 220, 516-524.
DOI: 10.1016/j.conbuildmat.2019.06.054
Google Scholar
[3]
Colangelo, F., Cioffi, R., Roviello, G., Capasso, I., Caputo, D., Aprea, P., ... & Ferone, C. J. C. P. B. E. (2017). Thermal cycling stability of fly ash based geopolymer mortars. Composites part b: engineering, 129, 11-17.
DOI: 10.1016/j.compositesb.2017.06.029
Google Scholar
[4]
Zhong, J., Zhou, G. X., He, P. G., Yang, Z. H., & Jia, D. C. (2017). 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon, 117, 421-426.
DOI: 10.1016/j.carbon.2017.02.102
Google Scholar
[5]
Nath, P., & Sarker, P. K. (2017). Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Construction and Building Materials, 130, 22-31.
DOI: 10.1016/j.conbuildmat.2016.11.034
Google Scholar
[6]
Bakri, A. M., Kamarudin, H., Bnhussain, M., Nizar, I. K., Rafiza, A. R., & Zarina, Y. (2012). The processing, characterization, and properties of fly ash based geopolymer concrete. Rev. Adv. Mater. Sci, 30(1), 90-97.
DOI: 10.1166/asl.2013.5187
Google Scholar
[7]
Bakri, A. M., Kamarudin, H., Binhussain, M., Nizar, I. K., Rafiza, A. R., & Zarina, Y. (2013). Comparison of geopolymer fly ash and ordinary portland cement to the strength of concrete. Advanced Science Letters, 19(12), 3592-3595.
DOI: 10.1166/asl.2013.5187
Google Scholar
[8]
Liu, C., Huang, X., Wu, Y. Y., Deng, X., Liu, J., Zheng, Z., & Hui, D. (2020). Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnology Reviews, 9(1), 155-169.
DOI: 10.1515/ntrev-2020-0014
Google Scholar
[9]
Wang, W., Zhong, Z., Kang, X., & Ma, X. (2023). Physico-mechanical properties and micromorphological characteristics of graphene oxide reinforced geopolymer foam concrete. Journal of Building Engineering, 72, 106732.
DOI: 10.1016/j.jobe.2023.106732
Google Scholar
[10]
Murali, M., Alaloul, W. S., Mohammed, B. S., Musarat, M. A., Al Salaheen, M., Al-Sabaeei, A. M., & Isyaka, A. (2022). Utilizing graphene oxide in cementitious composites: A systematic review. Case Studies in Construction Materials, e01359.
DOI: 10.1016/j.cscm.2022.e01359
Google Scholar
[11]
Liu, X., Wu, Y., Li, M., Jiang, J., Guo, L., Wang, W., Zhang, W., Zhang, Z., & Duan, P. (2020). Effects of graphene oxide on microstructure and mechanical properties of graphene oxide-geopolymer composites. Construction and Building Materials, 247, 118544.
DOI: 10.1016/j.conbuildmat.2020.118544
Google Scholar
[12]
Wang, J., Xu, Y., Wu, X., Zhang, P., & Hu, S. (2020). Advances of graphene-and graphene oxide-modified cementitious materials. Nanotechnology Reviews, 9(1), 465-477.
DOI: 10.1515/ntrev-2020-0041
Google Scholar
[13]
Singh, N. (2018). Fly Ash-Based Geopolymer Binder: A Future Construction Material. Minerals, 8(7), 299.
DOI: 10.3390/min8070299
Google Scholar
[14]
Maglad, A. M., Zaid, O., Arbili, M. M., Ascensão, G., Șerbănoiu, A. A., Grădinaru, C. M., ... & de Prado-Gil, J. (2022). A study on the properties of geopolymer concrete modified with nano graphene oxide. Buildings, 12(8), 1066.
DOI: 10.3390/buildings12081066
Google Scholar