[1]
A. Rafiq, M. Ikram, S. Ali, F. Niaz, M. Khan, and M. Maqbool. Photocatalytic Degradation of Dyes Using Semiconductor Photocatalyst to Clean Industrial Water Pollution. Journal of Industrial and Engineering Chemistry, 97(2021), 111-128
DOI: 10.1016/j.jiec.2021.02.017
Google Scholar
[2]
D. Ayodhya and G. Veerabhadram. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Materials Today Energy, 9(2018), 83-113
DOI: 10.1016/j.mtener.2018.05.007
Google Scholar
[3]
S. Alkaykh, A. Mbarek, and EEA Shattle. Photocatalytic Degradation of Methylene Blue Dye in Aqueous Solution by MnTiO3 Nanoparticles Under Sunlight Irradiation. Heliyon, 6(2020), 1-6
DOI: 10.1016/j.heliyon.2020.e03663
Google Scholar
[4]
J. Jiang, K. Kato, H. Fujimori, A. Yamakata, and Y. Sakata. Investigation On the Highly Active SrTiO3 Photocatalyst Toward Overall H2 Splitting by Doping Na Ion. Journal of Catalysis, 390(2020), 81-89
DOI: 10.1016/j.jcat.2020.07.025
Google Scholar
[5]
M. Ishmael. Enhanced Photocatalytic Hydrogen Production and Degradation of Organic Pollutants from Fe (III) Doped TiO2 Nanoparticles. Journal of Environmental Chemical Engineering, 8(2020), 1-9.
DOI: 10.1016/j.jece.2020.103676
Google Scholar
[6]
Q. Meng, C. Lv, J. Sun, W. Hong, W. Xing, L. Qiang, G. Chen, and X. Jin. High-Efficiency Fe-Mediated Bi2MoO6 Nitrogen-Fixing Photocatalyst: Reduced Surface Work Function and Ameliorated Surface Reaction. Applied Catalysis B: Environmental, 256(2019), 1-9
DOI: 10.1016/j.apcatb.2019.117781
Google Scholar
[7]
M. Abdi, V. Mahdikhah, and S. Sheibani. Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder. Optical Materials, 102(2020), 1-11
DOI: 10.1016/j.optmat.2020.109803
Google Scholar
[8]
DN Hikmah, DK Sandi, F. Nurosyid, Y. Iriani. Effect of Sintering Temperature and Holding Times on the Microstructure and Chemical Bond of Strontium Titanate (SrTiO3). Journal of Physics: Conference Series, 2110(2021), 1-5.
DOI: 10.1088/1742-6596/2110/1/012011
Google Scholar
[9]
Y. Tang, J. Zhao, J. Zhou, Y. Zeng, W. Zhang, and B. Shi. Highly efficient removal of Cr(III)-poly(acrylic acid) complex by coprecipitation with polyvalent metal ions: Performance, mechanism, and validation. Water Research, 178(2020), 115807
DOI: 10.1016/j.watres.2020.115807
Google Scholar
[10]
I.A. Nita, Y. Iriani, and F. Nurosyid. Pembuatan Ba0,8Sr0,2TiO3 menggunakan Metode Co-precipitation dengan Variasi Suhu Sintering. Indonesian Journal of Applied Physics, 17(2017), 52-58
DOI: 10.13057/ijap.v7i1.1776
Google Scholar
[11]
S. Merdekani. Synthesis of Fe3O4/SiO2 Nanocomposite Particles by Coprecipitation Method, Proceedings of PTNBR National Seminar on Nuclear Science and Technology – BATAN Bandung, 04 July 2013, 472-477
Google Scholar
[12]
S. Ahmed, AKMSH Faysal, MNI Khan, MA Basith, MS Bashar, HN Das, T. Hasan, and I. Ahmed. Room temperature ferroic orders in Zr and (Zr, Ni) doped SrTiO3. Results in Physics, 31(2021), 1-11
DOI: 10.1016/j.rinp.2021.104940
Google Scholar
[13]
W. Daniel, Thomas, and AE Martell. Absorption Spectra of para-substituted tetraphenylporphines. Contribution of the Department of Chemistry of Clark University, 78(1956), 1338-1343
DOI: 10.1021/ja01588a021
Google Scholar
[14]
SH Wang and PR Griffiths.Resolution enhancement of diffuse reflectance ir spectra of coals by fourier self-deconvolution. FUEL, 64(1983), 229-236
DOI: 10.1016/0016-2361(85)90223-6
Google Scholar
[15]
T. Xie, Y. Wang, C. Liu, and L. Xu. New insights into sensitization mechanism of the doped Ce (IV) into Strontium Titanate. Materials. 11(2018), 646
DOI: 10.3390/ma11040646
Google Scholar
[16]
M. Faisal, Suhartana, and Pardoyo. Zeolit alam termodifikasi logam Fe sebagai adsorben Fosfat (PO43-) pada air limbah. Jurnal Kimia Sains dan Aplikasi, 18(2015), 91-95
DOI: 10.14710/jksa.18.3.91-95
Google Scholar
[17]
D. Ding, W. Lan, Z. Yang, X. Zhao, Y. Chen, J. Wang, X. Zhang, Y. Zhang, Q. Su, and E. Xie. A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic application. Materials Science in Semiconductor Processing, 47(2016), 25-31
DOI: 10.1016/j.mssp.2016.02.004
Google Scholar
[18]
H. Niknam and AS Attar. Mg-doped TiO2 nanrods-SrTiO3 heterojunction composites for efficient visible-light photocatalytic degradation of basic yellow 28. Optical Materials, 136 (2023), 1-9
DOI: 10.1016/j.optmat.2022.113395
Google Scholar
[19]
X. Wang, L. So, R. Su, S. Wendt, P. Hald, and A. Mamakhel. The infulence of crystallite size and crystallinity of anatase nanoparticles on the photo-degradation of phenol. Journal of Catalysis, 310(2014), 100-108
DOI: 10.1016/j.jcat.2013.04.022
Google Scholar
[20]
V. Kumar, S. Choudhary, V. Malik, R. Nagarajan, A. Kandasami, and A. Subramanian. Enhancement in photocatalytic avtivity of SrTIO3 by tailoring particel size and defects. Physics Status Solidi, 1900294(2019), 1-11
DOI: 10.1002/pssa.201900294
Google Scholar