Morphological and Characterization Analysis of PCL/Estradiol Electrospun Membrane for Bone Regeneration Application

Article Preview

Abstract:

Extensive research is currently focused on finding alternative treatment for bone regeneration, due to the complexity and risks associated with existing procedures. One such alternative under investigation is the utilization of biodegradable nanofiber membranes, fabricated using an electrospinning method. In this study, polycaprolactone (PCL) was used as the main matrix to form electrospun membranes at different electrospinning parameters with the incorporation of estradiol to address bone regeneration capability. The effects of estradiol incorporation within the PCL membranes while determining the appropriate electrospinning parameters through morphological, chemical functionalities and wettability analyses were investigated. The inclusion of estradiol into the PCL matrix has reduced the nanofiber diameter and improved the wettability properties of the membranes. The alterations of electrospinning voltage and flow rate also impacted on the reduction of fiber diameter and wettability, which highlights the membrane’s potential for further cell attachment and bone regeneration.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

March 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Dimitriou, E. Jones, D. McGonagle and P. V. Giannoudis: BMC Med. Vol 9 (2011), p.66.

Google Scholar

[2] M. Ansari: Prog. Biomater. Vol 8 (2019), p.223–237.

Google Scholar

[3] S. Morelli, S.J. Liu and L. De Bartolo: Membranes. Vol. 11 (2021), 10.

Google Scholar

[4] L. de Bartolo, in: Encyclopedia of Membranes, edited by E. Drioli and L. Giorno, Springer, Berlin, DE (2015), p.1–2.

Google Scholar

[5] A. Memic, T. Abudula, H.S. Mohammed, K. Joshi Navare, T. Colombani and S.A. Bencherif: ACS Appl. Bio. Mater. Vol. 2 (2019), p.952–969.

DOI: 10.1021/acsabm.8b00637

Google Scholar

[6] M. Sadia, M.A Mohd Zaki, S. K. Jaganathan, M. F. M. Shakhih, A. S. Kamarozaman, N. N. Ab'lah and S. Saidin: Arab. J. Sci. Eng. Vol. 48 (2023), p.7323–7336

DOI: 10.1007/s13369-023-07736-6

Google Scholar

[7] L.L.E, W.H. Xu, L. Feng, Y. Liu, D.Q. Cai, N. Wen and W.J . Zheng: Int. J. Mol. Med. Vol. 37 (2016), p.1475–1486.

Google Scholar

[8] C. Steffi, D. Wang, C.H. Kong, Z. Wang, P.N. Lim, Z. Shi, E.S. Thian and W. Wang: ACS Appl. Mater. Interfaces vol. 10 (2018), 12, p.9988–9998.

DOI: 10.1021/acsami.8b01855

Google Scholar

[9] A.R. Unnithan, A.R. Sasikala, P. Murugesan, M. Gurusamy, D. Wu, C.H. Park and C.S. Kim: Int. J. Biol. Macromol. Vol. 77 (2015), p.1–8.

Google Scholar

[10] Y. Bagbi, P.R. Solanki and A. Pandey, in: Nanoscale Materials in Water Purification, edited by S. Thomas, D. Pasquini, S.Y. Leu, and D.A. Gopakumar, Elsevier, Amsterdam, NL (2019), p.275–288.

Google Scholar

[11] M. Yousefzadeh, in Electrospun Nanofibers, edited by M. Afshari, Elsevier, Amsterdam, NL (2017) p.277–301.

Google Scholar

[12] J. Xue, T. Wu, Y. Dai and Y. Xia: Chem. Rev. Vol. 119 (2019), p.5298–5415.

Google Scholar

[13] A. Haider, S. Haider and I. K. Kang: Arab. J. Chem. Vol. 11 (2018), 8, p.1165–1188.

Google Scholar

[14] G. Acik, C.E. Cansoy and M. Kamaci, Colloid Polym. Sci. Vol. 297 (2019), 1, p.77–83.

Google Scholar

[15] A. Geraili, M. Xing and K. Mequanint: View Vol. 2 (2021), 5, p.20200126.

Google Scholar

[16] B. Safari, S. Davaran and A. Aghanejad: Int. J. Biol. Macromol. Vol. 175 (2021), pp.544-557.

Google Scholar