[1]
Hu J, Yue J, Xu X, Han S, Sun T, Liu Y, et al. UAV-Based Remote Sensing for Soybean FVC, LCC, and Maturity Monitoring. Agric 2023, Vol 13, Page 692 [Internet]. 2023 Mar 16 [cited 2023 Sep 11];13(3):692. Available from: https://www.mdpi.com/2077-0472/13/3/692/htm
DOI: 10.3390/agriculture13030692
Google Scholar
[2]
dos Santos RA, Mantovani EC, Filgueiras R, Fernandes-Filho EI, da Silva ACB, Venancio LP. Actual Evapotranspiration and Biomass of Maize from a Red–Green-Near-Infrared (RGNIR) Sensor on Board an Unmanned Aerial Vehicle (UAV). Water 2020, Vol 12, Page 2359 [Internet]. 2020 Aug 22 [cited 2023 Sep 11];12(9):2359. Available from: https://www.mdpi.com/2073-4441/12/9/2359/htm
DOI: 10.3390/w12092359
Google Scholar
[3]
Ma Y, Jiang Q, Wu X, Zhu R, Gong Y, Peng Y, et al. Feasibility of Combining Deep Learning and RGB Images Obtained by Unmanned Aerial Vehicle for Leaf Area Index Estimation in Rice. Remote Sens 2021, Vol 13, Page 84 [Internet]. 2020 Dec 29 [cited 2023 Sep 28];13(1):84. Available from: https://www.mdpi.com/2072-4292/13/1/84/htm
DOI: 10.3390/rs13010084
Google Scholar
[4]
Jewan SYY, Pagay V, Billa L, Tyerman SD, Gautam D, Sparkes D, et al. The feasibility of using a low-cost near-infrared, sensitive, consumer-grade digital camera mounted on a commercial UAV to assess Bambara groundnut yield. Int J Remote Sens [Internet]. 2022 [cited 2023 Sep 11]; 43(2): 393–423. Available from: https://www.tandfonline.com/doi/abs/
DOI: 10.1080/01431161.2021.1974116
Google Scholar
[5]
Serrano L, Filella I, Peñuelas J. Remote Sensing of Biomass and Yield of Winter Wheat under Different Nitrogen Supplies. Crop Sci [Internet]. 2000 May 1 [cited 2023 Sep 11];40(3):723–31. Available from: https://onlinelibrary.wiley.com/doi/full/
DOI: 10.2135/cropsci2000.403723x
Google Scholar
[6]
Dong T, Meng J, Shang J, Liu J, Wu B, Huffman T. Modified vegetation indices for estimating crop fraction of absorbed photosynthetically active radiation. http://dx.doi.org/101080/0143116120151042122 [Internet]. 2015 Jun 18 [cited 2023 Sep 12]; 36 (12): 3097–113. Available from: https://www.tandfonline.com/doi/abs/10.1080/ 01431161.2015.1042122
DOI: 10.1080/01431161.2015.1042122
Google Scholar
[7]
Hassan MA, Yang M, Rasheed A, Jin X, Xia X, Xiao Y, et al. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote Sens 2018, Vol 10, Page 809 [Internet]. 2018 May 23 [cited 2023 Sep 12];10(6):809. Available from: https://www.mdpi.com/2072-4292/10/6/809/htm
DOI: 10.3390/rs10060809
Google Scholar
[8]
Zaman-Allah M, Vergara O, Araus JL, Tarekegne A, Magorokosho C, Zarco-Tejada PJ, et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods [Internet]. 2015 Jul 1 [cited 2023 Sep 12];11(1):1–10. Available from: https://plantmethods.biomedcentral.com/articles/
DOI: 10.1186/s13007-015-0078-2
Google Scholar
[9]
Su X, Wang J, Ding L, Lu J, Zhang J, Yao X, et al. Grain yield prediction using multi-temporal UAV-based multispectral vegetation indices and endmember abundance in rice. F Crop Res. 2023 Aug 1;299:108992.
DOI: 10.1016/j.fcr.2023.108992
Google Scholar
[10]
Maimaitiyiming M, Sagan V, Sidike P, Kwasniewski MT. Dual activation function-based Extreme Learning Machine (ELM) for estimating grapevine berry yield and quality. Remote Sens [Internet]. 2019 Apr 1 [cited 2021 Mar 10];11(7):740. Available from: www.mdpi.com/journal/remotesensing
DOI: 10.3390/rs11070740
Google Scholar
[11]
Zhang Y, Ma J, Liang S, Li X, Li M. An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass Estimation from Multiple Satellite Data Products. Remote Sens 2020, Vol 12, Page 4015 [Internet]. 2020 Dec 8 [cited 2023 Sep 13]; 12 (24): 4015. Available from: https://www.mdpi.com/2072-4292/12/24/4015/htm
DOI: 10.3390/rs12244015
Google Scholar
[12]
Wang W, Cheng Y, Ren Y, Zhang Z, Geng H. Prediction of Chlorophyll Content in Multi-Temporal Winter Wheat Based on Multispectral and Machine Learning. Front Plant Sci [Internet]. 2022 May 27 [cited 2023 Sep 13];13. Available from: https://pubmed.ncbi.nlm.nih.gov/35712585/
DOI: 10.3389/fpls.2022.896408
Google Scholar