Resolvent Based Hilbert Transform

Article Preview

Abstract:

To perform the Hilbert transform Hil of a non-integrable function φ, such as φ(x) = 1, x, in a numerical calculation-friendly way, we propose a method of rewriting Hil in terms of the resolvent for a differential operator R whose eigenfunctions satisfy the orthogonality and the completeness, so that the resolvent kernel 〈x|R-1y〉can be given by the eigenfunction expansion. We deal with two cases for the choice of R: one is the harmonic oscillator Hamiltonian, which is commutative with the Fourier transform F; and the other is such that is commutative with Hil itself. We show how the calculation of Hilφ is made in a numerical calculation-friendly way, to find that Πk=0,1 Hilfk (fk (x) = xk) satisfies quite a simple relation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-36

Citation:

Online since:

March 2024

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. W. King: Hilbert Transforms (Cambridge Univ. Press, New York, 2009).

Google Scholar

[2] T. Trogdon and S. Olver: Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Functions (Philadelphia, SIAM, 2015).

DOI: 10.1137/1.9781611974201

Google Scholar

[3] N Huang and S. Shen: Hilbert-Huang Transform and Its Applications (Singapore, World Scientific, 2005).

Google Scholar

[4] K. Ueno and Y. Nakamura: Phys. Lett. B 109, 273-278 (1982).

Google Scholar

[5] L. L. Chau, G. Mo-Lin, and Z. Popowicz, Phys. Rev. Lett. 52, 1940-1943 (1984).

Google Scholar

[6] S. Kuwata and D. Takehisa: IOP Conf. Ser.: Mater. Sci. Eng. Vol. 634, 012004 (2019).

Google Scholar

[7] S. Kuwata: AIP Conf. Proc. Vol. 1705, 020012 (2016).

Google Scholar

[8] N. Arcozzi and L. Fontana: Proc. Amer. Math. Soc. 126, 1747-1749 (1998).

Google Scholar

[9] T. Kobayashi and A. Nilsson: Math. Z. 260, 335-354 (2008).

Google Scholar

[10] P. Di Francesco, P. Mathieu, and D. Sénéchal: Conformal Field Theory (Springer, New York, 1997).

Google Scholar

[11] J. A. C. Weideman: Math. Comput. 64, 745-762 (1995).

Google Scholar

[12] W. Magnus, F. Oberhettinger, and R. P. Soni: Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, New York, 1966).

DOI: 10.1007/978-3-662-11761-3

Google Scholar

[13] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev: Integral and Series, Vol. 2, Special Functions (Gordon and Breach, New York, 1986).

Google Scholar