[1]
M. Tubani, A. Vourdas, and S. Zhang, "Zeros in analytic representations of finite quantum systems on a torus," Physica Scripta, vol. 82, no. 3, p.038107, 2010.
DOI: 10.1088/0031-8949/82/03/038107
Google Scholar
[2]
H. Eissa, P. Evangelides, C. Lei, and A. Vourdas, "Paths of zeros of analytic functions describing finite quantum systems," Physics Letters A, vol. 380, no. 4, pp.548-553, 2016.
DOI: 10.1016/j.physleta.2015.11.032
Google Scholar
[3]
A. Vourdas, "Analytic representations in quantum mechanics," Journal of Physics A: Mathematical and General, vol. 39, no. 7, p. R65, 2006.
Google Scholar
[4]
A. Vourdas and R. Bishop, "Thermal coherent states in the bargmann representation," Physical Review A, vol. 50, no. 4, p.3331, 1994.
DOI: 10.1103/physreva.50.3331
Google Scholar
[5]
M. Tabuni, "Open problems on zeros of analytic functions in finite quantum systems," International Journal of Nuclear and Quantum Engineering, vol. 7, no. 8, pp.1290-1294, 2013.
Google Scholar
[6]
A. Vourdas, "The growth of bargmann functions and the completeness of sequences of coherent states," Journal of Physics A: Mathematical and General, vol. 30, no. 13, p.4867, 1997.
DOI: 10.1088/0305-4470/30/13/034
Google Scholar
[7]
M. Tabuni, "Winding numbers of paths of analytic functions zeros in finite quantum systems," International Journal of Nuclear and Quantum Engineering, vol. 7, no. 8, pp.1295-1298, 2013.
Google Scholar
[8]
A. Perelomov, "Coherent states for arbitrary lie groups," in Generalized Coherent States and Their Applications. Springer, 1986, pp.40-47.
DOI: 10.1007/978-3-642-61629-7_3
Google Scholar
[9]
M. Mathur and H. Mani, "Su (n) coherent states," Journal of Mathematical Physics, vol. 43, no. 11, pp.5351-5364, 2002.
DOI: 10.1063/1.1513651
Google Scholar
[10]
N. Cotfas and J. P. Gazeau, "Finite tight frames and some applications," Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 19, p.193001, 2010.
DOI: 10.1088/1751-8113/43/19/193001
Google Scholar
[11]
C. Brif, A. Vourdas, and A. Mann, "Analytic representations based on su (1, 1) coherent states and their applications," Journal of Physics A: Mathematical and General, vol. 29, no. 18, p.5873, 1996.
DOI: 10.1088/0305-4470/29/18/017
Google Scholar
[12]
C. Lei, A. Vourdas, and A. Wünsche, "Analytic and contour representations in the unit disk based on su (1, 1) coherent states," Journal of mathematical physics, vol. 46, no. 11, p.112101, 2005.
DOI: 10.1063/1.2098527
Google Scholar
[13]
A. Vourdas, "Quantum systems with finite hilbert space," Reports on Progress in Physics, vol. 67, no. 3, p.267, 2004.
DOI: 10.1088/0034-4885/67/3/r03
Google Scholar
[14]
S. Zhang and A. Vourdas, "Analytic representation of finite quantum systems," Journal of Physics A: Mathematical and General, vol. 37, no. 34, p.8349, 2004.
DOI: 10.1088/0305-4470/37/34/011
Google Scholar
[15]
A. F. A. Mohammed, "Analytic representations of finite quantum systems based on su(2) coherent states and potential quantum applications to energy works," in 2022 Global Energy Conference (GEC). IEEE, 2022, pp.345-351.
DOI: 10.1109/gec55014.2022.9986916
Google Scholar
[16]
A. Vourdas and R. Bishop, "Quantum systems at negative temperatures: a holomorphic approach based on coherent states," Journal of Physics A: Mathematical and General, vol. 31, no. 42, p.8563, 1998.
DOI: 10.1088/0305-4470/31/42/015
Google Scholar
[17]
W. Wöger, H. King, R. J. Glauber, and J. W. Haus, "Spontaneous generation of coherent optical beats," Physical Review A, vol. 34, no. 6, p.4859, 1986.[18] S. Tarzi, "The inverted harmonic oscillator: some statistical properties," Journal of Physics A: Mathematical and General, vol. 21, no. 14, p.3105, 1988.
DOI: 10.1103/physreva.34.4859
Google Scholar
[19]
A. Vourdas and R. Bishop, "Dirac's contour representation in thermofield dynamics," Physical Review A, vol. 53, no. 3, p. R1205, 1996.
DOI: 10.1103/physreva.53.r1205
Google Scholar
[20]
P. A. M. Dirac, "On the analogy between classical and quantum mechanics," Reviews of Modern Physics, vol. 17, no. 2-3, p.195, 1945.
Google Scholar