[1]
E.J. Kansa. Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-ii solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers Mathematics with Applications, 19(8):147-161, 1990.
DOI: 10.1016/0898-1221(90)90271-k
Google Scholar
[2]
C.S. Chen, C.M. Fan, and P.H. Wen. The method of approximate particular solutions for solving certain partial differential equations. Numerical Methods for Partial Differential Equations, 28(2):506-522, 2012.
DOI: 10.1002/num.20631
Google Scholar
[3]
C. A. Bustamante, H. Power, W. F. Florez, and C. Y. Hang. The global approximate particular solution meshless method for two-dimensional linear elasticity problems. International Journal of Computer Mathematics, 90(5):978-993, 2013.
DOI: 10.1080/00207160.2012.741227
Google Scholar
[4]
J. M. Granados, C. A. Bustamante, H. Power, and W. F. Florez. A global stokes method of approximated particular solutions for unsteady two-dimensional navier-stokes system of equations. International Journal of Computer Mathematics, 94(8):1515-1541, 2017.[5] J. M. Granados, H. Power, C. A. Bustamante, and W. F. Flórez. Influence of magnetic fields on simultaneous stationary solutions of two-dimensional sudden expansion channel flow at low rem. Fluid Dynamics Research, 50(5):051416, aug 2018.
DOI: 10.1080/00207160.2016.1210795
Google Scholar
[6]
J. M. Granados, H. Power, C. A. Bustamante, W. F. Flórez, and A. F. Hill. A global particular solution meshless approach for the four-sided lid-driven cavity flow problem in the presence of magnetic fields. Computers Fluids, 160:120-137, 2018.
DOI: 10.1016/j.compfluid.2017.10.027
Google Scholar
[7]
Robert Schaback. Error estimates and condition numbers for radial basis function interpolation. Advances in Computational Mathematics, 3(3):251-264, 1995.
DOI: 10.1007/bf02432002
Google Scholar
[8]
C. K. Lee, X. Liu, and S. C. Fan. Local multiquadric approximation for solving boundary value problems. Computational Mechanics, 30(5):396-409, 2003.
DOI: 10.1007/s00466-003-0416-5
Google Scholar
[9]
B. Šarler and R. Vertnik. Meshfree explicit local radial basis function collocation method for diffusion problems. Computers Mathematics with Applications, 51(8):1269-1282, 2006. Radial Basis Functions and Related Multivariate Meshfree Approximation Methods: Theory and Applications.
DOI: 10.1016/j.camwa.2006.04.013
Google Scholar
[10]
T.J. Moroney and I.W. Turner. A finite volume method based on radial basis functions for two-dimensional nonlinear diffusion equations. Applied Mathematical Modelling, 30(10):1118-1133, 2006. Special issue of the 12th Biennial Computational Techniques and Applications Conference and Workshops (CTAC-2004) held at The University of Melbourne, Australia, from 27th September to 1st October 2004.
DOI: 10.1016/j.apm.2005.07.007
Google Scholar
[11]
D.F. Yun and Y.C. Hon. Improved localized radial basis function collocation method for multidimensional convection-dominated problems. Engineering Analysis with Boundary Elements, 67:63-80, 2016.
DOI: 10.1016/j.enganabound.2016.03.003
Google Scholar
[12]
J.M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1):289-314, 1996.
DOI: 10.1016/s0045-7825(96)01087-0
Google Scholar
[13]
Ali Safdari-Vaighani, Alfa Heryudono, and Elisabeth Larsson. A radial basis function partition of unity collocation method for convection-diffusion equations arising in financial applications. Journal of Scientific Computing, 64, 10 2014.
DOI: 10.1007/s10915-014-9935-9
Google Scholar
[14]
Davoud Mirzaei. The direct radial basis function partition of unity (d-rbf-pu) method for solving pdes. SIAM Journal on Scientific Computing, 43(1):A54-A83, 2021.
DOI: 10.1137/19m128911x
Google Scholar
[15]
Sara Arefian and Davoud Mirzaei. A compact radial basis function partition of unity method. Computers Mathematics with Applications, 127:1-11, 2022.
DOI: 10.1016/j.camwa.2022.09.029
Google Scholar