Uniform Torsion of Bar Having Cross Section Bounded by Two Hyperbola Arcs

Article Preview

Abstract:

The objective of this study is to give an analytical solution for the Saint-Venant torsion of bars having cross section bounded by two hyperbola arcs. The solution of the problem is based on the theory of uniform torsion which was developed by Saint-Venant and Prandtl. The material of the bar is homogeneous, isotropic and linearly elastic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-61

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. de Saint-Venant, Mémoire sur la torsion des prismes, Mémoires présetés par divers savants à l'Académie des sciences, Sciences Mathématiques et Physiques 14 (1856) 233-560.

DOI: 10.3406/marb.1856.1646

Google Scholar

[2] S.G. Lekhnitskii, Torsion of Anisotropic and Non-homogeneous Bars, Izd. Nauka, Fiz-Mat. Literatura (in Russian), Moscow, 1971.

Google Scholar

[3] I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

Google Scholar

[4] S. Timoshenko, J. N. Goodier, Theory of Eladticity, McGraw-Hill, New York, 1969.

Google Scholar

[5] L. Prandtl, Zur Torsion von prismatische Stäben, Physikalische Zeitschrift, 4 (1903), S. 758.

Google Scholar

[6] L. Prandtl, Eine neue Darstellung der Torsionspannungen bei prismatischen Stäben von beliebigem Querschnitt, Jahresbericht der deutschen Mathematiker-Vereinigung, 18(1904), S. 31.

DOI: 10.1007/978-3-662-11836-8_5

Google Scholar

[7] A.I. Lurie, Theory of Elasticity, Springer, Berlin, 2005.

Google Scholar

[8] M. Marin, G. Stan, Torsion of a bar with conic cross section, Nonlinear Studies, 14(3) (2007) 281-288.

Google Scholar

[9] F. Grasshof, Elastizität und Festigkeit, second ed., Berlin, 1878.

Google Scholar

[10] R. Barretta, A. Barretta, Shear stresses in elastic beams: an intrinsic approach, European Journal of Mechanics A / Solids, 29 (2010) 400-409.

DOI: 10.1016/j.euromechsol.2009.10.008

Google Scholar

[11] Z. Bai, R.T. Shield, Identities for Torsion of Cylinders, Journal of Applied Mechanics, 61(2) (1994) 499-500.

DOI: 10.1115/1.2901483

Google Scholar