A Review of Wire Arc Additive Manufacturing of High Strength 7xxx Series Aluminium Alloys

Article Preview

Abstract:

High strength 7xxx series aluminium alloys are widely utilized in the aerospace, automotive and other manufacturing industries due to their low cost, high specific strength, high stiffness strength and fracture toughness. Additive manufacturing presents new opportunities in producing 7xxx series aluminium alloys such as reduced material waste, shorter lead time, and increased design freedom. This paper reviews the current progress in Wire Arc Additive Manufacturing (WAAM) of 7xxx series aluminium alloys, a technology that offers benefits such as better energy absorption than alternative laser-based processes, high deposition rates, and unrestricted build size. A classification of the AM processes utilized to fabricate aluminium alloys and WAAM process variants for fabricating aluminium alloys are introduced. Also, some common defects including porosity, solidification cracking and volatile elements loss encountered during the WAAM process of 7xxx series aluminium alloys are discussed. Whilst porosity remains a major issue in 7xxx series aluminium alloys produced via WAAM, several opportunities to minimize or eliminate the defects through process selection and alloy development are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-32

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys. Materials & Design. 56 (2014) 862–871.

DOI: 10.1016/j.matdes.2013.12.002

Google Scholar

[2] M. Kang, C. Kim, A review of joining processes for high strength 7xxx series aluminum alloys. Journal of Welding and Joining. 35(6) (2017) 79-88.

DOI: 10.5781/jwj.2017.35.6.12

Google Scholar

[3] T.E. Abioye, H. Zuhailawati, S. Aizad, A.S. Anasyida, Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications. Transactions of Nonferrous Metals Society of China. 29(4) (2019) 667 – 679.

DOI: 10.1016/s1003-6326(19)64977-0

Google Scholar

[4] S.M. Manladan, F. Yusof, S. Ramesh, M. Fadzil, S. Ao, A review on resistance spot welding of aluminium alloys. International Journal of Advanced Manufacturing Technology. 90 (2017) 605–634.

DOI: 10.1007/s00170-016-9225-9

Google Scholar

[5] J.S Kim, I.J Kim, Y.G. Kim, Optimization of welding current waveform for dissimilar material with DP590 and Al5052 by Delta-spot welding process. Journal of Mechanical Science Technology. 30(6) (2016) 2713–2721.

DOI: 10.1007/s12206-016-0533-7

Google Scholar

[6] F.C. Campbell, Introduction and uses of lightweight materials, In: Lightweight materials – understanding the basics. ASM International, Ohio United State, 2012 pp.1-29

Google Scholar

[7] G. Çam, G. İpekoğlu, Recent developments in joining of aluminium alloys. International Journal of Advanced Manufacturing Technology. 91 (2017) 1851–1866.

Google Scholar

[8] B.T. Ogunsemi, T.E. Abioye, T.I. Ogedengbe, H. Zuhailawati, A review of various improvement strategies for joint quality of AA 6061-T6 friction stir weldments. Journal of Materials Research and Technology. 11 (2021). 1061-1089.

DOI: 10.1016/j.jmrt.2021.01.070

Google Scholar

[9] S.N. Md Yahaya, I.I. Azmi, C.H. Ng, L.C. Fung, M.Y. Hashim, A. Adam, R. Baehr, K.H. Grote, An overview on forming process and heat treatments for heat treatable aluminium alloy. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 70 ( 2020). 112-124.

DOI: 10.37934/arfmts.70.1.112124

Google Scholar

[10] J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi, A review of selective laser melting of aluminium alloys: processing, microstructure, property and developing trends. Journal of Materials Science & Technology. 35(2) (2018) 270-284

DOI: 10.1016/j.jmst.2018.09.004

Google Scholar

[11] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting. Progress in Material Science. 106 (2019) 100578.

DOI: 10.1016/j.pmatsci.2019.100578

Google Scholar

[12] B. Dong, X. Cai, S. Lin, X. Li, C., Yang, C. Fan, H. Sun, Wire arc additive manufacturing of Al-Zn-Mg-Cu Alloy: microstructures and mechanical properties. Additive Manufacturing. 36 (2020) 101447.

DOI: 10.1016/j.addma.2020.101447

Google Scholar

[13] K.S. Derekar, A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Materials Science and Technology. 34(8) (2018) 895–916.

DOI: 10.1080/02670836.2018.1455012

Google Scholar

[14] I. Peter, M. Rosso, Light alloys - From Traditional to Innovative Technologies. In: New Trends in Alloy Development, Characterization and Application, Intechopen, 2015, pp.3-37.

DOI: 10.5772/60769

Google Scholar

[15] E.A. Starke, S. Mridha, Aluminium alloys: alloys, heat treatment and temper designation. Reference Module in Material Science and Materials Engineering 2016.

DOI: 10.1016/b978-0-12-803581-8.02553-4

Google Scholar

[16] D.H. Herring, Temper designation for aluminium alloys: what they are and why we need to know. Online Referencing, https://www.industrialheating.com/articles/90357-temper-designations-for-aluminum-alloys-what-they-are-and-why-we-need-to-know 2012, Accessed 20 July 2021.

DOI: 10.4337/9780857936929.00015

Google Scholar

[17] J.R. Davis, Alloying: understanding the basics. ASM International, 2001 pp.351-416.

Google Scholar

[18] I. Polmear, D. StJohn, J. Nie, M. Qian, Wrought aluminium alloys. In: Light alloys – metallurgy of the light metals, fifth edition, 2017, p.157–263.

DOI: 10.1016/b978-0-08-099431-4.00004-x

Google Scholar

[19] M.J. Benoit, S.D. Sun, M. Brandt, M.A. Easton, processing window for laser metal deposition of al 7075 powder with minimized defects. Journal of Manufacturing Processes. 64 (2021) 1484-1492.

DOI: 10.1016/j.jmapro.2021.02.031

Google Scholar

[20] D. Oropeza, D.C. Hofmann, K. Williams, S. Firdosy, P. Bordeenithikasem, M. Sokoluk, M. Liese, J. Liu, X. Li, welding and additive manufacturing with nanoparticle - enhanced aluminium 7075 wire. Journal of Alloys and Compounds. 834 (2020) 154987.

DOI: 10.1016/j.jallcom.2020.154987

Google Scholar

[21] W.E. Frazier, Metal additive manufacturing: a review. Journal of Materials Engineering and Performance. 23(6) (2014) 1917–1928.

Google Scholar

[22] ISO/ASTM., Additive manufacturing - general principles terminology (ASTM52900) (2015).

Google Scholar

[23] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design. 69 (2015) 65-89.

DOI: 10.1016/j.cad.2015.04.001

Google Scholar

[24] W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. International Materials Reviews. 61(5) (2016) 315-360.

DOI: 10.1080/09506608.2015.1116649

Google Scholar

[25] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – process, structure and properties. Progress in Materials Science. 92(2018) 112-224.

DOI: 10.1016/j.pmatsci.2017.10.001

Google Scholar

[26] J. Butt, H. Mebrahtu, H. Shirvani, Strength Analysis of Aluminium Foil Parts Made by Composite Metal Foil Manufacturing. Progress in Additive Manufacturing. 1 (2016) 93-103.

DOI: 10.1007/s40964-016-0008-5

Google Scholar

[27] M.N. Gussev, N. Sridharan, M. Norfolk, K.A. Terrani, S.S. Babu, Effect of post weld heat treatment on the 6061 aluminium alloy produced by ultrasonic additive manufacturing. Materials Science and Engineering A. 684 (2017) 606-616

DOI: 10.1016/j.msea.2016.12.083

Google Scholar

[28] P.J. Wolcott, A. Hehr, C. Pawlowski, M.J. Dapino, Process improvements and characterization of ultrasonic additive manufactured structures. Journal of Materials Processing Technology. 233 (2016) 44-52.

DOI: 10.1016/j.jmatprotec.2016.02.009

Google Scholar

[29] J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, T.M. Pollock, 3D printing of high-strength aluminium alloys. Nature. 549 (2017) 365-369.

DOI: 10.1038/nature23894

Google Scholar

[30] M.L. Montero-Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.P. Kruth, J. Van Humbeeck, Changing the alloy composition of Al7075 for better processability by selective laser melting. Journal of Materials Processing Technology. 238 (2016) 437-445.

DOI: 10.1016/j.jmatprotec.2016.08.003

Google Scholar

[31] D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. Paola, S. Biamino, D. Ugues, M. Pavese, P. Fino, Additive manufacturing of Al alloys and aluminium matrix composites (AMCs). In: Light metal alloys applications, Intech. 2014 pp.3-33

DOI: 10.5772/58534

Google Scholar

[32] B.A. Fulcher, D.K. Leigh, T.J. Watt, Comparison of AlSi10Mg and Al 6061 processed through DMLS In: Proceedings of International Solid Freeform Fabrication Symposium. (2014)

Google Scholar

[33] E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Densification mechanism and microstructural evolution in selective laser sintering of Al–12Si powders. Journal of Materials Processing Technology. 211(1) (2011) 113-121.

DOI: 10.1016/j.jmatprotec.2010.09.003

Google Scholar

[34] S. Vaucher, D. C. Paraschivescu, C. Andre, O. Beffort, Selective laser sintering of aluminium-silicon carbide metal matrix composites. In: Materials week, ICM Munich 2002.

Google Scholar

[35] H. Bian, K. Aoyagi, Y. Zhao, C. Maeda, T. Mouri, A. Chiba, Microstructure refinement for superior ductility of Al–Si alloy by electron beam melting. Additive Manufacturing. 32(Part B) (2019) 100982.

DOI: 10.1016/j.addma.2019.100982

Google Scholar

[36] T. Mahale, D. Cormier, O. Harrysson, K. Ervin, Advances in electron beam melting of aluminum alloys. In: 18th Solid Freeform Fabrication Symposium, (2007) 312-323

Google Scholar

[37] D. Svetlizky, B. Zheng, T. Buta, Y. Zhou, O. Golan, U. Breiman, R. Haj-Ali, J.M. Schoenung, E.J. Lavernia, N. Eliaz, Directed energy deposition of Al 5xxx alloy using laser engineered net shaping (LENS®). Materials & Design. 192 (2020) 108763.

DOI: 10.1016/j.matdes.2020.108763

Google Scholar

[38] A. Langebeck, A. Bohlen, R. Rentsch, Mechanical properties of high strength aluminium alloy EN AW-7075 additively manufactured by directed energy deposition. Metals. 10(5) (2020) 579.

DOI: 10.3390/met10050579

Google Scholar

[39] A. Singh, A. Ramakrishnan, D. Baker, A. Biswas, G.P. Dinda, laser metal deposition of nickel coated Al 7050 alloy. Journal of Alloys and Compounds. 719 (2017) 151-158.

DOI: 10.1016/j.jallcom.2017.05.171

Google Scholar

[40] M. Froend, S. Riekehr, N. Kashaev, B. Klusemann, J. Enz, Process development for wire-based laser metal deposition of 5087 aluminium alloy by using fibre laser. Journal of Manufacturing Processes. 34 (2018a) 721-732.

DOI: 10.1016/j.jmapro.2018.06.033

Google Scholar

[41] C. Brice, R. Shenoy, M. Kral, K. Buchannan, Precipitation behavior of aluminium alloy 2139 fabricated using additive manufacturing. Materials Science and Engineering A. 648 (2015) 9-14.

DOI: 10.1016/j.msea.2015.08.088

Google Scholar

[42] K.M. Taminger, R A. Hafley, M.S. Domack, Evolution and control of 2219 aluminium microstructural features through electron beam freeform fabrication. Materials Science Forum. 519-521 (2006) 1297-1302.

DOI: 10.4028/www.scientific.net/msf.519-521.1297

Google Scholar

[43] V.R. Utyaganova, A.V. Filippov, N.N. Shamarin, A.V. Vorontsov, N.L. Savchenko, S.V. Fortuna, D.A. Gurianov, A.V. Chumaevskii, V.E. Rubtsov, S.Y. Tarasov, Controlling the porosity using exponential decay heat input regimes during electron beam wire-feed additive manufacturing of Al-Mg alloy. The International Journal of Advanced Manufacturing Technology. 108 (2020) 2823-2838.

DOI: 10.1007/s00170-020-05539-9

Google Scholar

[44] S. Li, L.J. Zhang, J. Ning, X. Wang, G.F. Zhang, J.X. Zhang, S.J. Na, Microstructures and mechanical properties of Al–Zn–Mg aluminium alloy samples produced by wire + arc additive manufacturing. Journal of Materials Research and Technology. 9(6) (2020) 13770-13780.

DOI: 10.1016/j.jmrt.2020.09.114

Google Scholar

[45] E. Eimer, W. Suder, S. Williams, J. Ding, Wire laser arc additive manufacture of aluminium zinc alloys. Welding in the World. 64 (2020) 1313-1319.

DOI: 10.1007/s40194-020-00872-9

Google Scholar

[46] T. Qi, H. Zhu, H. Zhang, J. Yin, L. Ke, X. Zeng, Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Materials & Design. 135 (2017) 257-266.

DOI: 10.1016/j.matdes.2017.09.014

Google Scholar

[47] A . Zadi-Maad, A. Basuki, The development of additive manufacturing technique for nickel-base alloys: A review. In: AIP Conference Proceedings. 1945 (2018) 020064

DOI: 10.1063/1.5030286

Google Scholar

[48] I. Gibson, D. Rosen, B. Stucker, Additive manufacturing technologies, second edition. springer, Springer New York Heidelberg Dordrecht London 2015.

Google Scholar

[49] T.E Abioye, P.K Farayibi, A.T. Clare, A comparative study of Inconel 625 laser cladding by wire and powder feedstock. Materials and Manufacturing Processes. 32(14) (2017) 1653 -1659.

DOI: 10.1080/10426914.2017.1317787

Google Scholar

[50] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3d printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. 143 (2018) 172-196

DOI: 10.1016/j.compositesb.2018.02.012

Google Scholar

[51] A. Dass, A. Moridi, State of the art in directed energy deposition: from additive manufacturing to materials design. Coatings. 9(7) (2019) 418.

DOI: 10.3390/coatings9070418

Google Scholar

[52] T.E. Abioye, D.G McCartney, A.T. Clare, Laser cladding of Inconel 625 wire for corrosion protection. Journal of Materials Processing Technology. 217 (2015) 232 -240.

DOI: 10.1016/j.jmatprotec.2014.10.024

Google Scholar

[53] Z. Pan, D. Ding, B. Wu, D. Cuiuri, H. Li, J. Norrish, Arc welding processes for additive manufacturing: A review. Transactions on Intelligent Welding Manufacturing. (2018) 3-24.

DOI: 10.1007/978-981-10-5355-9_1

Google Scholar

[54] Y. Zhou, X. Lin, N. Kang, W. Huang, J. Wang, Z. Wang, Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminium alloy. Journal of Materials Science & Technology. 37 (2019) 143-153

DOI: 10.1016/j.jmst.2019.06.016

Google Scholar

[55] C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman, Invited review article: Strategies and processes for high quality wire arc additive manufacturing. Additive Manufacturing. 22 (2018) 672-686.

DOI: 10.1016/j.addma.2018.06.020

Google Scholar

[56] K.E.K. Vimal, M .Naveen Srinivas, S. Rajak Wire arc additive manufacturing of aluminium alloys: A review. Materials Today: Proceedings. 41 (2021) 1139-1145.

DOI: 10.1016/j.matpr.2020.09.153

Google Scholar

[57] B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, J. Norrish, A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. Journal of Manufacturing Processes. 35 (2018) 127-139.

DOI: 10.1016/j.jmapro.2018.08.001

Google Scholar

[58] T. Hauser, R.T. Reisch, P.P. Breese, B.S. Lutz, M. Pantano, Y. Nalam, K. Bela, T. Kamps, J. Volpp, A.F.H. Alexander Kaplan, Porosity in wire arc additive manufacturing of aluminium alloys. Additive Manufacturing. 41 (2021) 101993

DOI: 10.1016/j.addma.2021.101993

Google Scholar

[59] T. Hauser, A.D. Silva, R.T. Reisch, J. Volpp, T. Kamps, A.F.H. Kaplan, Fluctuation effects in wire arc additive manufacturing of aluminium analysed by high-speed imaging. Journal of Manufacturing Processes. 56 (2020) 1088-1098.

DOI: 10.1016/j.jmapro.2020.05.030

Google Scholar

[60] C.G Pickin, K. Young Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Science and Technology of Welding and Joining. 11(5) (2006) 583-585.

DOI: 10.1179/174329306x120886

Google Scholar

[61] X. Fang, G. Chen, J. Yang, Y. Xie, K. Huang, B. Lu, Wire and arc additive manufacturing of high-strength Al–Zn–Mg aluminium alloy. Frontiers in Materials. 8 (2021) 116.

DOI: 10.3389/fmats.2021.656429

Google Scholar

[62] K.H. Li, Y.M. Zhang, Consumable double-electrode GMAW-Part 1: The process. Welding Journal. 87 (2008) 11-17

Google Scholar

[63] T. Matsumoto, S. Sasabe, Tandem MIG welding of aluminium alloys. Welding International. 19(12) (2005) 945–949.

DOI: 10.1533/wint.2005.3522

Google Scholar

[64] M.A. Somashekara, M. Naveenkumar, A. Kumar, C.Viswanath, S. Simhambhatla, Investigations into effect of weld-deposition pattern on residual stress evolution for metallic additive manufacturing. The International Journal of Advanced Manufacturing Technology. 90 (2016) 2009–2025.

DOI: 10.1007/s00170-016-9510-7

Google Scholar

[65] T.I. Ogedengbe, T.E. Abioye, A.I. Ekpemogu, Investigation of mechanical properties and parametric optimization of dissimilar GTAW of AISI 304 stainless steel and low carbon steel. World Journal of Engineering. 15(5) (2018) 584 -591.

DOI: 10.1108/wje-12-2017-0412

Google Scholar

[66] H. Geng, J. Li, J. Xiong, X. Lin, F. Zhang, Optimization of wire feed for GTAW based additive manufacturing. Journal of Materials Processing Technology. 243 (2017) 40–47.

DOI: 10.1016/j.jmatprotec.2016.11.027

Google Scholar

[67] H. Wang, R. Kovacevic, Rapid prototyping based on variable polarity gas tungsten arc welding for a 5356 aluminium alloy. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 215(11) (2001) 1519-1527.

DOI: 10.1243/0954405011519420

Google Scholar

[68] C. Shen, Z. Pan, Y. Ma, D. Cuiuri, H. Li, Fabrication of iron-rich Fe–Al intermetallics using the wire-arc additive manufacturing process. Additive Manufacturing 7 (2015) 20-26.

DOI: 10.1016/j.addma.2015.06.001

Google Scholar

[69] J. Wang, Z. Pan, Y. Ma, Y. Lu, C. Shen, D. Cuiuri, H. Li, Characterization of wire arc additively manufactured titanium aluminide functionally graded material: Microstructure, mechanical properties and oxidation behaviour. Materials Science and Engineering A. 734 (2018) 110-119.

DOI: 10.1016/j.msea.2018.07.097

Google Scholar

[70] Z. Qi, B. Cong, B. Qi, H. Sun, G. Zhao, J. Ding, Microstructure and mechanical properties of double-wire + arc additively manufactured Al-Cu-Mg alloys. Journal of Materials Processing Technology. 255 (2018) 347-353

DOI: 10.1016/j.jmatprotec.2017.12.019

Google Scholar

[71] T. A. Rodrigues, V. Duarte, R. M. Miranda, T. G. Santos, J. P. Oliveira, Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials. 12(7) (2019) 1121

DOI: 10.3390/ma12071121

Google Scholar

[72] A. Azarniya, A. K. Taheri, K. K. Taheri, Recent advances in ageing of 7xxx series aluminium alloys: A physical metallurgy perspective. Journal of Alloys and Compounds. (2018).

DOI: 10.1016/j.jallcom.2018.11.286

Google Scholar

[73] R. Lumley, Fundamentals of aluminium metallurgy: production, processing and applications. Woodhead Publishing Limited, (2011)

Google Scholar

[74] M. Froend, V. Ventzke, F. Dorn, N. Kashaev, B. Klusemann, J. Enz, Microstructure by design: An approach of grain refinement and isotropy improvement in multi-layer wire-based laser metal deposition. Materials Science and Engineering: A. 772 (2020)138635.

DOI: 10.1016/j.msea.2019.138635

Google Scholar

[75] X. Li, W. Tan, Numerical investigation of effects of nucleation mechanisms on grain structure in metal additive manufacturing. Computational Materials Science. 153 (2018) 159-169.

DOI: 10.1016/j.commatsci.2018.06.019

Google Scholar

[76] D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, M.A. Easton, Grain refinement of alloys in fusion-based additive manufacturing processes. Metallurgical and Materials Transactions A. 51 (2020) 1-19

DOI: 10.1007/s11661-020-05880-4

Google Scholar

[77] P.J. Morais, B. Gomes, P. Santos, M. Gomes, R. Gradinger, M. Schnall, S. Bozorgi, T. Klein, D. Fleischhacker, P. Warczok, A. Falahati, E. Kozeschnik, Characterisation of a high-performance Al–Zn–Mg–Cu alloy designed for wire arc additive manufacturing. Materials. 13(7) (2020) 1610.

DOI: 10.3390/ma13071610

Google Scholar

[78] T. Klein, M. Schnall, B. Gomes, P. Warczok, D. Fleischhacker, P J. Morais, Wire-Arc Additive Manufacturing of a Novel High-Performance Al-Zn-Mg-Cu Alloy: Processing, Characterization and Feasibility Demonstration. Additive Manufacturing. 37 (2021) 101663.

DOI: 10.1016/j.addma.2020.101663

Google Scholar

[79] Z. Yu, T. Yuan, M. Xu, H. Zhang, X. Jiang, S. Chen, Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy fabricated by wire + arc additive manufacturing. Journal of Manufacturing Processes. 62 (2021) 430 –439.

DOI: 10.1016/j.jmapro.2020.12.045

Google Scholar

[80] J. Gu, S. Yang, M. Gao, J. Bai, Y. Zhai, J. Ding, Micropore evolution in additively manufactured aluminium alloys under heat treatment and inter-layer rolling. Materials & Design. 186 (2019) 108288.

DOI: 10.1016/j.matdes.2019.108288

Google Scholar

[81] R. Fu, S. Tang, J. Lu, Y. Cui, Z. Li, H. Zhang, T. Xu, Z. Chen, C. Liu, Hot-wire arc additive manufacturing of aluminium alloy with reduced porosity and high deposition rate. Materials & Design. 199 (2021) 109370.

DOI: 10.1016/j.matdes.2020.109370

Google Scholar

[82] G. Langelandsvik, O. Ragnvaldsen, J. E. Flåm, O. M. Akselsen, H. J. Roven, Wire and arc additive manufacturing with TiC-nanoparticle reinforced AA5183 alloy. MATEC Web of Conferences. 326, (2020) 07002.

DOI: 10.1051/matecconf/202032607002

Google Scholar

[83] M. Gierth, P. Henckell, Y. Ali, J. Scholl, J. P. Bergmann, Wire arc additive manufacturing (WAAM) of aluminium alloy AlMg5Mn with energy-reduced gas metal arc welding (GMAW). Materials. 13(12) (2020) 2671

DOI: 10.3390/ma13122671

Google Scholar

[84] F. M. Ghaini, M. Sheikhi, M. J. Torkamany, J. Sabbaghzadeh, The relation between liquation and solidification cracks in pulsed laser welding of 2024 aluminium alloy. Materials Science and Engineering A. 519 (2009) 167–171.

DOI: 10.1016/j.msea.2009.04.056

Google Scholar

[85] S. Thapliyal, challenges associated with the wire arc additive manufacturing (WAAM) of aluminium alloys. Materials Research Express, (2019).

DOI: 10.1088/2053-1591/ab4dd4

Google Scholar

[86] R. Boillat, S.P. Isanaka, F. Liou, The effect of nanostructures in aluminium alloys processed using additive manufacturing on microstructural evolution and mechanical performance behaviour. Crystals. 11(15) (2021) 524.

DOI: 10.3390/cryst11050524

Google Scholar

[87] B. Cong, R. Ouyang, B. Qi , Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminium-copper alloy welds. Rare Metal Materials and Engineering. 45(3) (2016) 606-611.

DOI: 10.1016/s1875-5372(16)30080-7

Google Scholar

[88] D. Liu, D. Wu, R. Wang, J. Shi, F. Niu, G. Ma, Formation mechanism of Al-Zn-Mg-Cu alloy fabricated by laser-arc hybrid additive manufacturing: Microstructure evaluation and mechanical properties. Additive Manufacturing. 50(2022) 102554.

DOI: 10.1016/j.addma.2021.102554

Google Scholar

[89] G. Langelandsvik, O. M Akselsen, T. Furu, H. J. Roven, Review of aluminium alloy development for wire arc additive manufacturing. Materials 14(18) (2021) 5370.

DOI: 10.3390/ma14185370

Google Scholar

[90] H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, X. Zeng, Effect of zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg Alloy. Scripta Materialia. 134 (2017) 6–10.

DOI: 10.1016/j.scriptamat.2017.02.036

Google Scholar

[91] J. P. Oliveira, T.G. Santos, R. M. Miranda, Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Progress in Materials Science. 107 (2020) 100590.

DOI: 10.1016/j.pmatsci.2019.100590

Google Scholar

[92] X. Guo, H. Li, Z. Pan, S. Zhou, Microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu-Sc aluminium alloy fabricated by wire + arc additive manufacturing. Journal of Manufacturing Processes. 79 (2022) 576-586.

DOI: 10.1016/j.jmapro.2022.05.009

Google Scholar