Prediction of High-Entropy Alloy Phases Using Soft Computing Techniques

Article Preview

Abstract:

High-entropy alloys (HEAs) have excellent properties that are being explored for potential applications in many engineering fields. Their excellent properties strongly depend on their phases. The vastness of alloy compositions that can be synthesized makes it extremely challenging to experimentally investigate all the possible HEA types. To mitigate these challenges, more efficient and systematic computational techniques can be applied to the existing experimental data to accelerate HEA design and discovery. Therefore, this study developed three soft computing classification models based on artificial neural network, k-nearest neighbor (kNN), and support vector machine (SVM) to classify solid solution, amorphous and intermetallic phases in HEAs. Empirical studies showed that hyperparameter optimization improved classification accuracies of the classifiers with kNN (92%) outperforming ANN (86%) and SVM (90%) using all five predictive features. Feature selection did not improve the classification accuracy of any of the model. This studied demonstrated the importance of applying soft computing techniques and hyperparameter optimization for enhancing the classification accuracies of models to predict the phases in HEAs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[2] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[3] A.D. Akinwekomi, F. Akhtar, Bibliometric Mapping of Literature on High-Entropy/ Multicomponent Alloys and Systematic Review of Emerging Applications, Entropy 24 (2022) 329.

DOI: 10.3390/E24030329

Google Scholar

[4] S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505. https://doi.org/10.1063/ 1.3587228.

DOI: 10.1063/1.3587228

Google Scholar

[5] M.H. Tsai, J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett. 2 (2014) 107–123.

DOI: 10.1080/21663831.2014.912690

Google Scholar

[6] J. Xiong, T.Y. Zhang, S.Q. Shi, Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses, MRS Commun. 9 (2019) 576–585.

DOI: 10.1557/mrc.2019.44

Google Scholar

[7] H. Mao, H.L. Chen, Q. Chen, TCHEA1: A thermodynamic database not limited for "High Entropy" alloys, J. Phase Equilibria Diffus. 38 (2017) 353–368.

DOI: 10.1007/s11669-017-0570-7

Google Scholar

[8] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, Development and exploration of refractory high entropy alloys - A review, J. Mater. Res. 33 (2018) 3092–3128.

DOI: 10.1557/jmr.2018.153

Google Scholar

[9] J.K. Pedersen, T.A.A. Batchelor, A. Bagger, J. Rossmeisl, High-entropy alloys as catalysts for the CO2 and CO reduction reactions_spt info, ACS Catal. 10 (2020) 1–11.

DOI: 10.26434/chemrxiv.9850997.v1

Google Scholar

[10] M.C. Gao, C.S. Carney, N. Doğan, P.D. Jablonksi, J.A. Hawk, D.E. Alman, Design of refractory high-entropy alloys, JOM 67 (2015) 2653–2669.

DOI: 10.1007/s11837-015-1617-z

Google Scholar

[11] W. Sun, X. Huang, A.A. Luo, Phase formations in low density high entropy alloys, Calphad 56 (2017) 19–28.

DOI: 10.1016/J.CALPHAD.2016.11.002

Google Scholar

[12] W. Huang, P. Martin, H.L. Zhuang, Machine-learning phase prediction of high-entropy alloys, Acta Mater. 169 (2019) 225–236.

DOI: 10.1016/j.actamat.2019.03.012

Google Scholar

[13] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008) 534–538. https://doi.org/10.1002/adem. 200700240.

DOI: 10.1002/adem.200700240

Google Scholar

[14] A. Takeuchi, T. Wada, H. Kato, Solid solutions with bcc, hcp, and fcc structures formed in a composition line in multicomponent Ir–Rh–Ru–W–Mo system, Mater. Trans. 60 (2019) 2267–2276.

DOI: 10.2320/matertrans.MT-M2019212

Google Scholar

[15] S. Guo, C. Ng, C.T. Liu, Anomalous solidification microstructures in Co-free Al xCrCuFeNi2 high-entropy alloys, J. Alloys Compd. 557 (2013) 77–81. https://doi.org/10.1016/j.jallcom. 2013.01.007.

DOI: 10.1016/j.jallcom.2013.01.007

Google Scholar

[16] X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233–238. https://doi.org/10.1016/j.matchemphys. 2011.11.021.

DOI: 10.1016/j.matchemphys.2011.11.021

Google Scholar

[17] Z.D. Han, H.W. Luan, S.F. Zhao, N. Chen, R.X. Peng, Y. Shao, K.F. Yao, Microstructures and Mechanical Properties of AlCrFeNiMo0.5Tix High Entropy Alloys, Chinese Phys. Lett. 35 (2018) 036102.

DOI: 10.1088/0256-307X/35/3/036102

Google Scholar

[18] S. Luo, P. Gao, H. Yu, J. Yang, Z. Wang, X. Zeng, Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior, J. Alloys Compd. 771 (2019) 387–397. https://doi.org/10.1016/j.jallcom. 2018.08.290.

DOI: 10.1016/j.jallcom.2018.08.290

Google Scholar

[19] V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, Adv. Powder Technol. 29 (2018) 2221–2230.

DOI: 10.1016/j.apt.2018.06.006

Google Scholar

[20] F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments, Sci. Adv. 4 (2018).

DOI: 10.1126/sciadv.aaq1566

Google Scholar

[21] Y.T. Sun, H.Y. Bai, M.Z. Li, W.H. Wang, Machine learning approach for prediction and understanding of glass-forming ability, J. Phys. Chem. Lett. 8 (2017) 3434–3439.

DOI: 10.1021/acs.jpclett.7b01046

Google Scholar

[22] H. Zhang, H. Fu, X. He, C. Wang, L. Jiang, L.Q. Chen, J. Xie, Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater. 200 (2020) 803–810.

DOI: 10.1016/j.actamat.2020.09.068

Google Scholar

[23] P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, A.J. Norquist, Machine-learning-assisted materials discovery using failed experiments, Nature 533 (2016) 73–76.

DOI: 10.1038/nature17439

Google Scholar

[24] N. Islam, W. Huang, H.L. Zhuang, Machine learning for phase selection in multi-principal element alloys, Comput. Mater. Sci. 150 (2018) 230–235. https://doi.org/10.1016/j.commatsci. 2018.04.003.

DOI: 10.1016/j.commatsci.2018.04.003

Google Scholar

[25] S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int. 21 (2011) 433–446.

DOI: 10.1016/S1002-0071(12)60080-X

Google Scholar

[26] C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Machine learning assisted design of high entropy alloys with desired property, Acta Mater. 170 (2019) 109–117.

DOI: 10.1016/j.actamat.2019.03.010

Google Scholar

[27] F.M. Albagmi, A. Alansari, D.S. Al Shawan, H.Y. AlNujaidi, S.O. Olatunji, Prediction of generalized anxiety levels during the Covid-19 pandemic: A machine learning-based modeling approach, Informatics Med. Unlocked 28 (2022) 100854. https://doi.org/10.1016/j.imu. 2022.100854.

DOI: 10.1016/j.imu.2022.100854

Google Scholar

[28] R. Jamshidi-Alashti, M. Mohammadi Zahrani, B. Niroumand, Use of artificial neural networks to predict the properties of replicated open-cell aluminum alloy foam via processing parameters of melt squeezing procedure, Mater. Des. 51 (2013) 1035–1044.

DOI: 10.1016/j.matdes.2013.05.026

Google Scholar

[29] M. Sarkar, T.Y. Leong, Application of K-nearest neighbors algorithm on breast cancer diagnosis problem., in: AMIA Symp., 2000: p.759–763.

Google Scholar

[30] A.D. Akinwekomi, A.I. Lawal, Neural network-based model for predicting particle size of AZ61 powder during high-energy mechanical milling, Neural Comput. Appl. 33 (2021) 17611–17619.

DOI: 10.1007/s00521-021-06345-4

Google Scholar

[31] D. Dai, T. Xu, X. Wei, G. Ding, Y. Xu, J. Zhang, H. Zhang, Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys, Comput. Mater. Sci. 175 (2020) 109618.

DOI: 10.1016/j.commatsci.2020.109618

Google Scholar

[32] I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application, J. Microbiol. Methods 43 (2000) 3–31. https://doi.org/10.12989/cac. 2013.11.3.237.

DOI: 10.1016/s0167-7012(00)00201-3

Google Scholar

[33] C.-W. Hsu, C.-C. Chang, C.-J. Lin, A practical guide to Support Vector Classification, Taiwan, 2016.

DOI: 10.1177/02632760022050997

Google Scholar