[1]
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[2]
D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[3]
A.D. Akinwekomi, F. Akhtar, Bibliometric Mapping of Literature on High-Entropy/ Multicomponent Alloys and Systematic Review of Emerging Applications, Entropy 24 (2022) 329.
DOI: 10.3390/E24030329
Google Scholar
[4]
S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505. https://doi.org/10.1063/ 1.3587228.
DOI: 10.1063/1.3587228
Google Scholar
[5]
M.H. Tsai, J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett. 2 (2014) 107–123.
DOI: 10.1080/21663831.2014.912690
Google Scholar
[6]
J. Xiong, T.Y. Zhang, S.Q. Shi, Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses, MRS Commun. 9 (2019) 576–585.
DOI: 10.1557/mrc.2019.44
Google Scholar
[7]
H. Mao, H.L. Chen, Q. Chen, TCHEA1: A thermodynamic database not limited for "High Entropy" alloys, J. Phase Equilibria Diffus. 38 (2017) 353–368.
DOI: 10.1007/s11669-017-0570-7
Google Scholar
[8]
O.N. Senkov, D.B. Miracle, K.J. Chaput, J.P. Couzinie, Development and exploration of refractory high entropy alloys - A review, J. Mater. Res. 33 (2018) 3092–3128.
DOI: 10.1557/jmr.2018.153
Google Scholar
[9]
J.K. Pedersen, T.A.A. Batchelor, A. Bagger, J. Rossmeisl, High-entropy alloys as catalysts for the CO2 and CO reduction reactions_spt info, ACS Catal. 10 (2020) 1–11.
DOI: 10.26434/chemrxiv.9850997.v1
Google Scholar
[10]
M.C. Gao, C.S. Carney, N. Doğan, P.D. Jablonksi, J.A. Hawk, D.E. Alman, Design of refractory high-entropy alloys, JOM 67 (2015) 2653–2669.
DOI: 10.1007/s11837-015-1617-z
Google Scholar
[11]
W. Sun, X. Huang, A.A. Luo, Phase formations in low density high entropy alloys, Calphad 56 (2017) 19–28.
DOI: 10.1016/J.CALPHAD.2016.11.002
Google Scholar
[12]
W. Huang, P. Martin, H.L. Zhuang, Machine-learning phase prediction of high-entropy alloys, Acta Mater. 169 (2019) 225–236.
DOI: 10.1016/j.actamat.2019.03.012
Google Scholar
[13]
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (2008) 534–538. https://doi.org/10.1002/adem. 200700240.
DOI: 10.1002/adem.200700240
Google Scholar
[14]
A. Takeuchi, T. Wada, H. Kato, Solid solutions with bcc, hcp, and fcc structures formed in a composition line in multicomponent Ir–Rh–Ru–W–Mo system, Mater. Trans. 60 (2019) 2267–2276.
DOI: 10.2320/matertrans.MT-M2019212
Google Scholar
[15]
S. Guo, C. Ng, C.T. Liu, Anomalous solidification microstructures in Co-free Al xCrCuFeNi2 high-entropy alloys, J. Alloys Compd. 557 (2013) 77–81. https://doi.org/10.1016/j.jallcom. 2013.01.007.
DOI: 10.1016/j.jallcom.2013.01.007
Google Scholar
[16]
X. Yang, Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater. Chem. Phys. 132 (2012) 233–238. https://doi.org/10.1016/j.matchemphys. 2011.11.021.
DOI: 10.1016/j.matchemphys.2011.11.021
Google Scholar
[17]
Z.D. Han, H.W. Luan, S.F. Zhao, N. Chen, R.X. Peng, Y. Shao, K.F. Yao, Microstructures and Mechanical Properties of AlCrFeNiMo0.5Tix High Entropy Alloys, Chinese Phys. Lett. 35 (2018) 036102.
DOI: 10.1088/0256-307X/35/3/036102
Google Scholar
[18]
S. Luo, P. Gao, H. Yu, J. Yang, Z. Wang, X. Zeng, Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior, J. Alloys Compd. 771 (2019) 387–397. https://doi.org/10.1016/j.jallcom. 2018.08.290.
DOI: 10.1016/j.jallcom.2018.08.290
Google Scholar
[19]
V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, N.K. Mukhopadhyay, Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy, Adv. Powder Technol. 29 (2018) 2221–2230.
DOI: 10.1016/j.apt.2018.06.006
Google Scholar
[20]
F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments, Sci. Adv. 4 (2018).
DOI: 10.1126/sciadv.aaq1566
Google Scholar
[21]
Y.T. Sun, H.Y. Bai, M.Z. Li, W.H. Wang, Machine learning approach for prediction and understanding of glass-forming ability, J. Phys. Chem. Lett. 8 (2017) 3434–3439.
DOI: 10.1021/acs.jpclett.7b01046
Google Scholar
[22]
H. Zhang, H. Fu, X. He, C. Wang, L. Jiang, L.Q. Chen, J. Xie, Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater. 200 (2020) 803–810.
DOI: 10.1016/j.actamat.2020.09.068
Google Scholar
[23]
P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, A.J. Norquist, Machine-learning-assisted materials discovery using failed experiments, Nature 533 (2016) 73–76.
DOI: 10.1038/nature17439
Google Scholar
[24]
N. Islam, W. Huang, H.L. Zhuang, Machine learning for phase selection in multi-principal element alloys, Comput. Mater. Sci. 150 (2018) 230–235. https://doi.org/10.1016/j.commatsci. 2018.04.003.
DOI: 10.1016/j.commatsci.2018.04.003
Google Scholar
[25]
S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int. 21 (2011) 433–446.
DOI: 10.1016/S1002-0071(12)60080-X
Google Scholar
[26]
C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, Y. Su, Machine learning assisted design of high entropy alloys with desired property, Acta Mater. 170 (2019) 109–117.
DOI: 10.1016/j.actamat.2019.03.010
Google Scholar
[27]
F.M. Albagmi, A. Alansari, D.S. Al Shawan, H.Y. AlNujaidi, S.O. Olatunji, Prediction of generalized anxiety levels during the Covid-19 pandemic: A machine learning-based modeling approach, Informatics Med. Unlocked 28 (2022) 100854. https://doi.org/10.1016/j.imu. 2022.100854.
DOI: 10.1016/j.imu.2022.100854
Google Scholar
[28]
R. Jamshidi-Alashti, M. Mohammadi Zahrani, B. Niroumand, Use of artificial neural networks to predict the properties of replicated open-cell aluminum alloy foam via processing parameters of melt squeezing procedure, Mater. Des. 51 (2013) 1035–1044.
DOI: 10.1016/j.matdes.2013.05.026
Google Scholar
[29]
M. Sarkar, T.Y. Leong, Application of K-nearest neighbors algorithm on breast cancer diagnosis problem., in: AMIA Symp., 2000: p.759–763.
Google Scholar
[30]
A.D. Akinwekomi, A.I. Lawal, Neural network-based model for predicting particle size of AZ61 powder during high-energy mechanical milling, Neural Comput. Appl. 33 (2021) 17611–17619.
DOI: 10.1007/s00521-021-06345-4
Google Scholar
[31]
D. Dai, T. Xu, X. Wei, G. Ding, Y. Xu, J. Zhang, H. Zhang, Using machine learning and feature engineering to characterize limited material datasets of high-entropy alloys, Comput. Mater. Sci. 175 (2020) 109618.
DOI: 10.1016/j.commatsci.2020.109618
Google Scholar
[32]
I.A. Basheer, M. Hajmeer, Artificial neural networks: fundamentals, computing, design, and application, J. Microbiol. Methods 43 (2000) 3–31. https://doi.org/10.12989/cac. 2013.11.3.237.
DOI: 10.1016/s0167-7012(00)00201-3
Google Scholar
[33]
C.-W. Hsu, C.-C. Chang, C.-J. Lin, A practical guide to Support Vector Classification, Taiwan, 2016.
DOI: 10.1177/02632760022050997
Google Scholar