Assessment of the Influence of Surface Quality on the Bending Fatigue Strength of WAAM Ultra-High-Strength Steel

Article Preview

Abstract:

This investigation evaluates the influence of surface quality on the bending fatigue strength of Wire Arc Additive Manufacturing (WAAM) Ultra-High-Strength (UHS) steel, The study is focused on structural integrity, hardness, surface roughness, tensile strength, and bending fatigue performance. Cross-sectional analysis reveals slight variations in wall thickness, averaging 5.5 mm, with an absence of discernible pores or defects, affirming the process's capability to yield high-quality results. Hardness assessments indicate uniformity across the deposited component, with an average hardness of 303 HV, emphasizing consistent material properties. Surface roughness analysis highlights superior fatigue strength in polished samples compared to machined and as-built ones, with roughness inversely impacting fatigue resistance. Tensile tests confirm satisfactory yield and tensile strength, with favorable ductility characteristics. Bending fatigue tests show that surface quality significantly influences fatigue strength, with polished samples exhibiting the highest fatigue limit. Conversely, as-built surfaces display the lowest fatigue strength due to increased sensitivity to crack initiation, emphasizing the critical role of surface quality in UHS steel fatigue performance. These findings underscore the suitability of WAAM-printed UHS steel for structural applications while emphasizing the importance of surface quality in determining fatigue resistance and overall component performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-25

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Weber, X. Meng, R. Zhang, M. Nitawaki, T. Sagawa and L. Gardner: Mater. Des. Vol. 237 (2024), p.112517

Google Scholar

[2] J. Xiong, Y.J. Li and Z.Q. Yin: Chin. J. Mech. Eng. Vol. 31 (2018), p.74

Google Scholar

[3] R. Konečná and G. Nicoletto: Procedia Struct. Integr. Vol. 23 (2019), p.384

Google Scholar

[4] Y. Ayan and N. Kahraman: Mater. Chem. Phys. Vol. 315 (2024), p.128937

Google Scholar

[5] K. Kozáková and J. Klusák: Procedia Struct. Integr. Vol. 43 (2023), p.178

Google Scholar

[6] H. Zhang, C. Li, G. Yao, Y. Shi and Y. Zhang: Int. J. Fatigue Vol. 160 (2022), p.106838

Google Scholar

[7] M. Subasic, M. Olsson, S. Dadbakhsh, X. Zhao, P. Krakhmalev and R. Mansour: Int. J. Fatigue Vol. 180 (2024), p.108077

DOI: 10.1016/j.ijfatigue.2023.108077

Google Scholar

[8] L.C. Araujo, L. Malcher, D. de Oliveira and J.A. Araújo: Int. J. Fatigue Vol. 178 (2024) p.107981

Google Scholar

[9] S. Zhou, J. Zhang, G. Yang, Y. Wang, B. Li, D. An, J. Zheng and W. Wei: J. Mater. Res. Technol. Vol. 28 (2024), p.347

Google Scholar

[10] M. Dinovitzer, X. Chen, J. Laliberte, X. Huang and H. Frei: Addit. Manuf. Vol. 26 (2019), p.138

Google Scholar

[11] Y. Zhang, X. Sang, G. Xu, G. Wang and M. Zhao: Int. J. Fatigue Vol. 177 (2023), p.107921

Google Scholar

[12] T.A. Rodrigues, V.R. Duarte, D. Tomás, J.A. Avila, J.D. Escobar, E. Rossinyol, N. Schell, T.G. Santos and J.P. Oliveira: Addit. Manuf. Vol. 34 (2020), p.101200

DOI: 10.1016/j.addma.2020.101200

Google Scholar

[13] M.T. Chen, T. Zhang, Z. Gong, W. Zuo, Z. Wang, L. Zong, O. Zhao and L. Hu: Eng. Struct. Vol. 300 (2024), p.117092

Google Scholar

[14] F. Uriati and G. Nicoletto: Int. J. Fatigue Vol. 162 (2022), p.107004

Google Scholar

[15] N. Yamaguchi, Y. Tokita, T. Shiozaki, Y. Tamai, Y. Ichikawa and K. Ogawa: Int. J. Fatigue Vol. 175 (2023), p.107819

DOI: 10.1016/j.ijfatigue.2023.107819

Google Scholar

[16] Information on https://www.iso.org/standard/78322.html, Metallic materials, Tensile testing, Part 1: Method of test at room temperature (ISO 6892-1:2019)

Google Scholar