The Effect of Chemical Texturization Parameters on the Diameter of Pyramids on Silicon Solar Wafers

Article Preview

Abstract:

Light capturing is an essential part of many optical devices such as solar cells. This study aimed at modifying surface reflectivity of silicon solar wafers to improve light trapping. A simple and easily controllable etching technique was used to achieve this objective. The surface topography of silicon wafers was modified by etching a controllable pyramid structure on these surfaces. Potassium hydroxide (KOH) solution was used to etch the silicon surface; the concentrations of KOH were 1mol/L and 2mol/L at temperatures 50°C and 70°C and a varying etching time of 15 and 30 minutes. The surface morphology of the wafer was analyzed by optical microscopy. The activation energy for the reaction was shown to be 42.2 kJ that is very near the value indicated by previous investigators. A texturization mechanism was also advanced using a new parameter that monitors the progressive changes in the diameter of the pyramids. This analysis shows a general increase in the sizes with reduction at certain intervals that can be attributed to the difference in etching rates of the crystal family planes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

September 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Heinemeyer F., Steckenreiter V., Kiefer F., Peibst R. Hierarchical etching for improved optical front-side properties of monocrystalline Si solar cells. Energy Procedia, 77, (2015), 810-815.

DOI: 10.1016/j.egypro.2015.07.114

Google Scholar

[2] Razak N.H.A., Amin N., Rahman K.S., Pasupuleti J., Akhtaruzzaman Md., Sopian K., Albaqami M.D., Tighezza A.M., Alothman Z.A., Sillanpää M. Influence of pulsed Nd:YAG laser oscillation energy on silicon wafer texturing for enhanced absorption in photovoltaic cells. Results in Physics, 48, (2023), 106435.

DOI: 10.1016/j.rinp.2023.106435

Google Scholar

[3] Abdulkadir A., Aziz A.A., Mohd Zamir Pakhuruddin M.Z. Impact of micro-texturization on hybrid micro/nano-textured surface for enhanced broadband light absorption in crystalline silicon for application in photovoltaics. Materials Science in Semiconductor Processing, 105 (2020), 104728.

DOI: 10.1016/j.mssp.2019.104728

Google Scholar

[4] P. Campbell, M.A. Green. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys., 62, (1987), 243–249

DOI: 10.1063/1.339189

Google Scholar

[5] Macdonald D. H., Cuevas A., Kerr M. J., Samundsett C., Ruby D., Winderbaum S., Leo A. Texturing industrial multicrystalline silicon solar cells. Solar Energy, 76 (1-3), 277-283, (2004).

DOI: 10.1016/j.solener.2003.08.019

Google Scholar

[6] Bashera M.K., Hossaina M.K., Uddinb M.J., Akanda M.A.R., Shorowordic K.M. Effect of pyramidal texturization on the optical surface reflectance of monocrystalline photovoltaic silicon wafers. Optik - International Journal for Light and Electron Optics, 172, (2018), 801-811.

DOI: 10.1016/j.ijleo.2018.07.116

Google Scholar

[7] Wang J., Zhong F., Liu H., Zhao L., Wang W., Xu X., Zhang Y., Yan H. Influence of the textured pyramid size on the performance of silicon heterojunction solar cell. Solar Energy, 221, 114-119, (2021)

DOI: 10.1016/j.solener.2021.04.021

Google Scholar

[8] Lien S.Y., Yang C.H., Hsua C.H., Lin Y.S., Wang C.C, Wuu D.S. Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell. Materials Chemistry and Physics, 133, (2012), 63–68.

DOI: 10.1016/j.matchemphys.2011.12.052

Google Scholar

[9] Nanostructure-induced fast texturization of mono-crystalline silicon in low concentration alkaline solution, Jiale Yang, Honglie Shena, Luanhong Sun, Materials Science in Semiconductor Processing, 94, (2019), 1-8.

DOI: 10.1016/j.mssp.2019.01.028

Google Scholar

[10] Meinel B., Koschwitz T., Heinemann R., Acker, J. (2014). The texturization process during horizontal acidic etching of multi-crystalline silicon wafers. Materials Science in Semiconductor Processing, 26, 695-703, (2014).

DOI: 10.1016/j.mssp.2014.08.047

Google Scholar

[11] Sethi C., Anand V.K., Walia K., Sood S.C. Optimization of surface reflectance for alkaline textured monocrystalline silicon solar cell. Technol. Int. J. Comput. Sci. Commun. Technol., 5, (2012), 974.

Google Scholar

[12] Lippold M., Buchholz F., Gondek C., Honeit F., Wefringhaus E., Kroke E. Texturing of SiC-slurry and diamond wire sawn silicon wafers by HF-HNO3-H2SO4 mixtures. Solar Energy Materials and Solar Cells, 127, (2014), 104-110.

DOI: 10.1016/j.solmat.2014.04.006

Google Scholar

[13] Singh P.K., Kumar R., Lal M., Singh S.N., Das B.K. Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Solar Energy Materials and Solar Cells, 70, (2001), 103-113.

DOI: 10.1016/s0927-0248(00)00414-1

Google Scholar

[14] Seidel H., Csepregi L., Heuberger A., Baumgartel H. Anisotropic etching of crystaline silicon in alkaline solutions. Journal of the Electrochemical Society, 137, 11, 1990, 3613-3631.

DOI: 10.1149/1.2086278

Google Scholar