[1]
L. Hernández-Callejo, S. Gallardo-Saavedra, and V. Alonso-Gómez, "A review of photovoltaic systems: Design, operation and maintenance," Solar Energy, vol. 188. Elsevier Ltd, p.426–440, Aug. 01, 2019.
DOI: 10.1016/j.solener.2019.06.017
Google Scholar
[2]
B. Parida, S. Iniyan, and R. Goic, A review of solar photovoltaic technologies, Renewable and Sustainable Energy Reviews, vol. 15, no. 3. Elsevier Ltd, p.1625–1636, 2011.
DOI: 10.1016/j.rser.2010.11.032
Google Scholar
[3]
Y. Wang, S. Zhou, and H. Huo, "Cost and CO2 reductions of solar photovoltaic power generation in China: Perspectives for 2020," Renewable and Sustainable Energy Reviews, vol. 39. Elsevier Ltd, p.370–380, 2014.
DOI: 10.1016/j.rser.2014.07.027
Google Scholar
[4]
R. M. da Silva and J. L. M. Fernandes, "Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab," Solar Energy, vol. 84, no. 12, p.1985–1996, Dec. 2010'
DOI: 10.1016/j.solener.2010.10.004
Google Scholar
[5]
S. Sargunanathan, A. Elango, and S. T. Mohideen, "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, vol. 64. Elsevier Ltd, p.382–393, 2016.
DOI: 10.1016/j.rser.2016.06.024
Google Scholar
[6]
O. Beeri, O. Rotem, E. Hazan, E. A. Katz, A. Braun, and Y. Gelbstein, "Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling," Journal of Applied Physics, vol. 118, no. 11, Sep. 2015.
DOI: 10.1063/1.4931428
Google Scholar
[7]
M. Zhang et al., "Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules," Applied Energy, vol. 109, p.51–59, 2013.
DOI: 10.1016/j.apenergy.2013.03.008
Google Scholar
[8]
N. Prasanth, M. Sharma, R. N. Yadav, and P. Jain, "Designing of latent heat thermal energy storage systems using metal porous structures for storing solar energy," Journal of Energy Storage, vol. 32, Dec. 2020.
DOI: 10.1016/j.est.2020.101990
Google Scholar
[9]
A. Hasan, J. Sarwar, H. Alnoman, and S. Abdelbaqi, "Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate," Solar Energy, vol. 146, pp.417-429, 2017.
DOI: 10.1016/j.solener.2017.01.070
Google Scholar
[10]
C. J. Ho, B. T. Jou, C. M. Lai, and C. Y. Huang, "Performance assessment of a BIPV integrated with a layer of water-saturated MEPCM," Energy and Buildings, vol. 67, p.322–333, 2013.
DOI: 10.1016/j.enbuild.2013.08.035
Google Scholar
[11]
H. Hashim, J. J. Bomphrey, and G. Min, "Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system," Renewable Energy, vol. 87, p.458–463, Mar. 2016.
DOI: 10.1016/j.renene.2015.10.029
Google Scholar
[12]
S. Shittu, G. Li, X. Zhao, Y. G. Akhlaghi, X. Ma, and M. Yu, "Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe," Energy Conversion and Management, vol. 193, p.1–14, Aug. 2019.
DOI: 10.1016/j.enconman.2019.04.055
Google Scholar
[13]
R. Lamba and S. C. Kaushik, "Solar driven concentrated photovoltaic-thermoelectric hybrid system: Numerical analysis and optimization," Energy Conversion and Management, vol. 170, p.34–49, Aug. 2018.
DOI: 10.1016/j.enconman.2018.05.048
Google Scholar
[14]
E. Yin, Q. Li, and Y. Xuan, "Experimental optimization of operating conditions for concentrating photovoltaic-thermoelectric hybrid system," Journal of Power Sources, vol. 422, p.25–32, May 2019.
DOI: 10.1016/j.jpowsour.2019.03.034
Google Scholar
[15]
Z. Liu et al., "Novel integration of carbon counter electrode based perovskite solar cell with thermoelectric generator for efficient solar energy conversion," Nano Energy, vol. 38, p.457–466, Aug. 2017.
DOI: 10.1016/j.nanoen.2017.06.016
Google Scholar
[16]
M.A. Fini, D. Gharapetian, and M. Asgari, "Efficiency improvement of hybrid PV-TEG system based on an energy, exergy, energy-economic and environmental analysis; experimental, mathematical and numerical approaches," Energy Conversion and Management, vol. 265, p.115767, Oct. 2022.
DOI: 10.1016/j.enconman.2022.115767
Google Scholar
[17]
K. S. Garud and M.-Y. Lee, "Thermodynamic, environmental and economic analyses of photovoltaic/thermal-thermoelectric generator system using single and hybrid particle nanofluids," Energy, vol. 255, p.124515, Nov. 2022.
DOI: 10.1016/j.energy.2022.124515
Google Scholar
[18]
F. J. Montero et al., "Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile," Energy, vol. 239. Elsevier Ltd, p.122058, 2022.
DOI: 10.1016/j.energy.2021.122058
Google Scholar
[19]
S. Lv, J. Yang, J. Ren, B. Zhang, Y. Lai, and Z. Chang, "Research and numerical analysis on performance optimization of photovoltaic-thermoelectric system incorporated with phase change materials," Energy, vol. 263. p.125850, Jun. 2023.
DOI: 10.1016/j.energy.2022.125850
Google Scholar
[20]
E. Baştürk and M. V. Kahraman, "Thermal and Phase Change Material Properties of Comb-Like Polyacrylic Acid-Grafted-Fatty Alcohols," Polymer - Plastics Technology and Engineering, vol. 57, no. 4, p.276–282, Mar. 2018.
DOI: 10.1080/03602559.2017.1326134
Google Scholar
[21]
N. Wang, J. Tang, H.-S. Shan, H.-Z. Jia, R.-L. Peng, and L. Zuo, "Efficient Power Conversion Using a PV-PCM-TE System based on a Long Time Delay Phase Change with Concentrating Heat," IEEE Transactions on Power Electronics, Dec. 2023.
DOI: 10.1109/tpel.2023.3283301
Google Scholar
[22]
M. Naderi, B. M. Ziapour, and M. Y. Gendeshmin, "Improvement of photocells by the integration of phase change materials and thermoelectric generators (PV-PCM-TEG) and study on the ability to generate electricity around the clock," Journal of Energy Storage, vol. 36, Apr. 2021.
DOI: 10.1016/j.est.2021.102384
Google Scholar
[23]
J. Darkwa, J. Calautit, D. Du, and G. Kokogianakis, "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, vol. 248, p.688–701, Aug. 2019.
DOI: 10.1016/j.apenergy.2019.04.147
Google Scholar
[24]
H. Metwally, N. A. Mahmoud, M. Ezzat, and W. Aboelsoud, "Numerical investigation of photovoltaic hybrid cooling system performance using the thermoelectric generator and RT25 Phase change material," Journal of Energy Storage, vol. 42, Oct. 2021.
DOI: 10.1016/j.est.2021.103031
Google Scholar
[25]
J. Ko and J. W. Jeong, "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, vol. 145, Jul. 2021.
DOI: 10.1016/j.rser.2021.111085
Google Scholar
[26]
F. Rajaee, M. A. V. Rad, A. Kasaeian, O. Mahian, and W. M. Yan, "Experimental analysis of a photovoltaic/thermoelectric generator using cobalt oxide nanofluid and phase change material heat sink," Energy Conversion and Management, vol. 212, May 2020.
DOI: 10.1016/j.enconman.2020.112780
Google Scholar
[27]
E. Yin, Q. Li, D. Li, and Y. Xuan, "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, vol. 169, p.172–185, Feb. 2019.
DOI: 10.1016/j.energy.2018.12.035
Google Scholar
[28]
M. J. Khoshnazm, A. Marzban, and N. Azimi, "Performance enhancement of photovoltaic panels integrated with thermoelectric generators and phase change materials: Optimization and analysis of thermoelectric arrangement," Energy , vol. 267, 2023.
DOI: 10.1016/j.energy.2022.126556
Google Scholar
[29]
Y. Maleki, F. Pourfayaz, and M. Mehrpooya, "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, vol. 201, p.202–215, Nov. 2022.
DOI: 10.1016/j.renene.2022.11.037
Google Scholar
[30]
A. (Antonio) Luque and Steven. Hegedus, Handbook of photovoltaic science and engineering. Wiley, 2011.
Google Scholar