[1]
Aqua Foods, Sustainability Report 2022, Aqua Foods, 2022. URL: https://aquafoods.com/wp-content/uploads/AquaFoods-Sustainability-Report-2022.pdf.
Google Scholar
[2]
M. Troell, R.L. Naylor, M. Metian, M. Beveridge, P.H. Tyedmers, C. Folke, K.J. Arrow, S. Barrett, A.-S. Crépin, P.R. Ehrlich, Å. Gren, N. Kautsky, S.A. Levin, K. Nyborg, H. Österblom, S. Polasky, M. Scheffer, B.H. Walker, T. Xepapadeas, A. de Zeeuw, Does aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 13257–13263.
DOI: 10.1073/pnas.1404067111
Google Scholar
[3]
C.M. Rossignoli, T. Manyise, K.M. Shikuku, et al., Tilapia aquaculture systems in Egypt: Characteristics, sustainability outcomes and entry points for sustainable aquatic food systems, Aquaculture 577 (2023) 739952.
DOI: 10.1016/j.aquaculture.2023.739952
Google Scholar
[4]
R.E. Short, S. Gelcich, D.C. Little, et al., Harnessing the diversity of small-scale actors is key to the future of aquatic food systems, Nat Food 2 (2021) 733–741.
DOI: 10.1038/s43016-021-00363-0
Google Scholar
[5]
M. Tigchelaar, W.W.L. Cheung, E.Y. Mohammed, et al., Compound climate risks threaten aquatic food system benefits, Nat Food 2 (2021) 673–682.
DOI: 10.1038/s43016-021-00368-9
Google Scholar
[6]
C.C. Hicks, J.A. Gephart, J.Z. Koehn, et al., Rights and representation support justice across aquatic food systems, Nat Food 3 (2022) 851–861.
DOI: 10.1038/s43016-022-00618-4
Google Scholar
[7]
R. Adam, A. Amani, R. Kuijpers, K. Danielsen, E. Smits, F. Kruijssen, N. Moran, M. Tigchelaar, C. Wabnitz, A. Tilley, M. Luzzi, R.H. Peerzadi, A. Ride, Climate-resilient aquatic food systems require transformative change to address gender and intersectional inequalities, PLOS Climate 2 (2023) e0000309.
DOI: 10.1371/journal.pclm.0000309
Google Scholar
[8]
S.A. Salloum, R. Khan, K. Shaalan, A survey of semantic analysis approaches, in: Proc. Int. Conf. Comput. Vision (AICV2020), Springer, 2020, p.61–70.
Google Scholar
[9]
N. Evangelopoulos, X. Zhang, V.R. Prybutok, Latent Semantic Analysis: five methodological recommendations, Eur. J. Inf. Syst. 21 (2012) 70–86.
DOI: 10.1057/ejis.2010.61
Google Scholar
[10]
S.S. Kulkarni, U.M. Apte, N.E. Evangelopoulos, The use of latent semantic analysis in operations management research, Decision Sci. 45 (2014) 971–994.
DOI: 10.1111/deci.12095
Google Scholar
[11]
P. Drieger, Semantic network analysis as a method for visual text analytics, Procedia Soc. Behav. Sci. 79 (2013) 4–17.
DOI: 10.1016/j.sbspro.2013.05.053
Google Scholar
[12]
P. Kherwa, P. Bansal, Latent semantic analysis: an approach to understand semantic of text, in: Proc. Int. Conf. Curr. Trends Comput. Electr. Electron. Commun. (CTCEEC), IEEE, 2017, p.870–874.
DOI: 10.1109/ctceec.2017.8455018
Google Scholar
[13]
V. Narozhnyi, V. Kharchenko, Semantic clustering method using integration of advanced LDA algorithm and BERT algorithm, Innov. Technol. Sci. Solut. Ind. 1 (2024) 140–153.
DOI: 10.30837/ITSSI.2024.27.140
Google Scholar
[14]
N. Evangelopoulos, X. Zhang, V.R. Prybutok, Latent semantic analysis: Five methodological recommendations, Eur. J. Inf. Syst. 21 (2012) 70–86.
DOI: 10.1057/ejis.2010.61
Google Scholar
[15]
L.Q. Cao, V.C. Hoang, N. Tran, Synthesis of baseline GHG emission data and estimation methods in aquatic food systems in Vietnam, WorldFish, Penang, Malaysia, 2023. Working Paper. URL: https://cgspace.cgiar.org/items/c7b3b2eb-539f-479a-9a9a-6d56763711be.
Google Scholar
[16]
M. Tlusty, P. Tyedmers, F. Ziegler, M. Jonell, P. Henriksson, R. Newton, D.C. Little, J.P. Fry, D. Love, L. Cao, Commentary: comparing efficiency in aquatic and terrestrial animal production systems, Environ. Res. Lett. 13 (2018) 128001.
DOI: 10.1088/1748-9326/aae945
Google Scholar
[17]
C. Benavent-Celma, N. López-García, T. Ruba, M.E. Ściślak, D. Street-Jones, P. van West, S. Woodward, J. Witzell, Current practices and emerging possibilities for reducing the spread of oomycete pathogens in terrestrial and aquatic production systems in the European Union, Fungal Biol. Rev. 40 (2022) 19–36.
DOI: 10.1016/j.fbr.2021.10.001
Google Scholar
[18]
E. Kamau-Mbuthia, C. Lesorogol, A. Wamukota, et al., Sustainable aquatic food systems: Multisectoral analysis of determinants of child nutrition in coastal Kenya, Front. Sustain. Food Syst. (2023). URL: https://www.frontiersin.org/journals/sustainable-food-systems/ articles/.
DOI: 10.3389/fsufs.2023.1091339
Google Scholar
[19]
Studysmarter, Understanding Aquatic Food Production Systems, 2024. URL: https: //www.studysmarter.co.uk/explanations/environmental-science/biological-resources/aquatic-food-production/.
Google Scholar
[20]
I.R. Crute, J.F. Muir, Improving the productivity and sustainability of terrestrial and aquatic food production systems: future perspectives, J. Agric. Sci. 149 (2011) 1–7.
DOI: 10.1017/S0021859611000074
Google Scholar
[21]
S. Goddek, A. Joyce, B. Kotzen, G. Burnell, Aquaponics Food Production Systems, Springer, London, 2018.
DOI: 10.1007/978-3-030-15943-6
Google Scholar
[22]
WorldFish, Aquatic food systems, URL: https://worldfishcenter.org/research/aquatic-food-systems.
Google Scholar
[23]
Wageningen University & Research, Food Systems, 2024. URL: https://www.wur.nl/en/research-results/themes/from-hunger-to-food-security/food-systems.htm.
Google Scholar
[24]
R. Kaur, H. Sonam Kumar, S&T of Blue Revolution in India in the Backdrop of SDGs: Role of Aquatic Food System, in: R.C. Sobti (Ed.), Role of Science and Technology for Sustainable Future, Springer, Singapore, 2024.
DOI: 10.1007/978-981-97-0710-2_12
Google Scholar
[25]
K. Ranga, K. Galappaththi, A. Schlingmann, The sustainability assessment of Indigenous and local knowledge-based climate adaptation responses in agricultural and aquatic food systems, Curr. Opin. Environ. Sustain. 62 (2023) 101276. https://doi.org/10.1016/ j.cosust.2023.101276.
DOI: 10.1016/j.cosust.2023.101276
Google Scholar
[26]
G. Pruder, Biological control of gas exchange in intensive aquatic production systems, Proc. OCEANS '83, San Francisco, CA, USA, 1983, p.1002–1004.
DOI: 10.1109/OCEANS.1983.1152014
Google Scholar
[27]
Global Seafood Alliance. (n.d.). What Is the Environmental Impact of Aquaculture? URL: https://www.globalseafood.org/blog/what-is-the-environmental-impact-of-aquaculture
Google Scholar
[28]
Beveridge, M. C. M., Phillips, M. J., & Macintosh, D. J. (1997). Aquaculture and the environment: the supply of and demand for environmental goods and services by Asian aquaculture and the implications for sustainability. Aquaculture Research, 28(10), 797-807
DOI: 10.1111/j.1365-2109.1997.tb01004.x
Google Scholar
[29]
Earth Journalism Network. (n.d.). Environmental Problems of Aquaculture. URL: https://earthjournalism.net/resources/tipsheet/environmental-problems-of-aquaculture
Google Scholar
[30]
FAO, Farmed aquatic food for all tastes – The journey of twelve Mediterranean and Black Sea species from farms to your plates, 2023. Rome: Food and Agriculture Organization of the United Nations
DOI: 10.4060/cc5140en
Google Scholar
[31]
FAO, The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action, 2024. Rome: Food and Agriculture Organization of the United Nations
DOI: 10.4060/cd0683en
Google Scholar
[32]
BlueLife Hub, The role of aquaculture and fisheries for global food security, 2024, September 17. URL: https://www.bluelifehub.com/2024/09/17/the-role-of-aquaculture-and-fisheries-for-global-food-security/
Google Scholar
[33]
United Nations Nutrition, Aquatic foods: Policy brief, n.d. URL: https://www.unnutrition.org/wp-content/uploads/FINAL-UN-Nutrition-Aquatic-foods-Paper_EN_.pdf
Google Scholar
[34]
A.G.J. Tacon, M. Metian, Aquaculture in the 21st century: Major challenges and opportunities. Translational Animal Science, 2019, 3(2), 903–915. URL: https://academic.oup.com/tas/article/3/2/903/5487790?login=false
Google Scholar
[35]
The Fish Site, A compelling case for aquaculture's role in global food security, 2023, March 15. URL: https://thefishsite.com/articles/a-compelling-case-for-aquacultures-role-in-global-food-security
Google Scholar
[36]
Food and Agriculture Organization of the United Nations, Aquatic foods critical for global food security and nutrition security, 2021, July 29. URL: https://www.fao.org/north-america/news/details/Aquatic-foods-critical-for-global-food-security-and-nutrition-security/en
DOI: 10.1016/j.gfs.2022.100641
Google Scholar
[37]
Institute of Marine Research, Sustainable aquatic foods can play a critical role in global food security and nutrition, 2021, July 29. URL: https://www.hi.no/en/hi/news/2021/july/ sustainable-aquatic-foods-can-play-a-critical-role-in-global-food-security-and-nutrition
DOI: 10.1016/j.gfs.2022.100641
Google Scholar