Synthesis, Structure and Magnetic Properties of Carbon Composites Based on Finely Dispersed Powders of Different Valence Iron Oxides

Article Preview

Abstract:

A method for the synthesizing of carbon composites based on hydrolysis lignin powders and iron oxides (FeO and Fe₂O₃) was proposed in this work. The obtained composites were studied by X-ray diffractometry, adsorption/desorption gas porometry and magnetometry. X-ray phase analysis has revealed the presence of an amorphous carbon phase and crystalline phases of FeO, Fe3O4, Fe2O3, and Fe in both types of synthesised composites. The synthesized composites demonstrated significantly higher specific magnetisation values compared to the initial iron oxide powders. For Fe₂O₃ powder, the specific magnetisation was σs = 6 A·m²/kg, while the saturation specific magnetisation of the composite based on this oxide was σs = 34 A·m²/kg. For FeO powder, the specific magnetisation was σs = 28 A·m²/kg, with the composite based on it exhibiting a specific saturation magnetisation of σs = 40 A·m²/kg. The observed results were explained by the formation of particles with sufficiently high values of specific magnetisation due to thermal reduction of iron oxides in the presence of carbon monoxide, obtained from the pyrolysis of hydrolysed lignin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-11

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sivashankar, A.B. Sathya, K. Vasantharaj, V. Sivasubramanian, Magnetic composite an environmental super adsorbent for dye sequestration: a review, Environ. Nanotechnol. Monit. Manag. 1 (2014) 36-49.

DOI: 10.1016/j.enmm.2014.06.001

Google Scholar

[2] Y. Wen, Z. Zheng, S. Wang, T. Han, W. Yang, P.G. Jönsson, Magnetic bio-activated carbons production using different process parameters for phosphorus removal from artificially prepared phosphorus-rich and domestic wastewater, Chemosphere, 271 (2021) 129561.

DOI: 10.1016/j.chemosphere.2021.129561

Google Scholar

[3] S. Rodríguez-Sánchez, P. Díaz, B. Ruiz, S. González, M. Díaz-Somoano, E. Fuente, Food industrial biowaste-based magnetic activated carbons as sustainable adsorbents for anthropogenic mercury emissions, J. Environ. Manage. 312 (2022) 114897.

DOI: 10.1016/j.jenvman.2022.114897

Google Scholar

[4] G.T. Tee, X.Y. Gok, W.F. Yong, Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review, Environ. Res. 212 (2022) 113248.

DOI: 10.1016/j.envres.2022.113248

Google Scholar

[5] N. Nahurskyi, M. Malovanyy, I. Bordun, E. Szymczykiewicz, Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review, Chem. Chem. Technol. 18 (2024) 170–187.

DOI: 10.23939/chcht18.02.170

Google Scholar

[6] G. Rzepa, T. Bajda, T. Ratajczak, Utilization of bog iron ores as sorbents of heavy metals, J. Hazard. Mater. 162 (2009) 1007–1013.

DOI: 10.1016/j.jhazmat.2008.05.135

Google Scholar

[7] M. Tuchowska, G. Rzepa, K. Debiec-Andrzejewska, L. Drewniak, T. Bajda, Immobilization of arsenic compounds by bog iron ores, Desalin. Water Treat. 157 (2019) 138–147.

DOI: 10.5004/dwt.2019.24126

Google Scholar

[8] S.I. Siddiqui, S.A. Chaudhry, Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement, Process Saf. Environ. Prot. 111 (2017) 592–626.

DOI: 10.1016/j.psep.2017.08.009

Google Scholar

[9] M.D. Nguyen, H.-V. Tran, S. Xu, T.R. Lee, Fe₃O₄ Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications, Appl. Sci. 11 (2021) 11301.

DOI: 10.3390/app112311301

Google Scholar

[10] I. Bordun, E. Szymczykiewicz, Synthesis and Electrochemical Properties of Fe₃O₄/C Nanocomposites for Symmetric Supercapacitors, Appl. Sci. 14 (2024) 677.

DOI: 10.3390/app14020677

Google Scholar

[11] K.S. Ukanwa, K. Patchigolla, R. Sakrabani, E. Anthony, S. Mandavgane, A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass, Sustainability 11 (2019) 6204.

DOI: 10.3390/su11226204

Google Scholar

[12] Zuwaina Ali Nasser Alshamsi, Santosh Walke, Utilization of Food Waste for Production of Activated Carbon, International Journal of Electrical Engineering and Technology. 12 (2021) 88–95.

Google Scholar

[13] J.M. Davidraj, C.I. Sathish, M.R. Benzigar, Z. Li, X. Zhang, R. Bahadur, A. Vinu, Recent advances in food waste-derived nanoporous carbon for energy storage, Sci. Technol. Adv. Mater. 25 (2024) 2357062.

DOI: 10.1080/14686996.2024.2357062

Google Scholar

[14] A.A. Alalykin, R.L. Vesnin, D.A. Kozulin, Preparation of modified hydrolysis lignin and its use for filling epoxy polymers and enhancing their flame resistance, Russ. J. Appl. Chem. 84 (2011) 1616–1622.

DOI: 10.1134/s1070427211090278

Google Scholar

[15] W. Hao, F. Björnerbäck, Y. Trushkina, M. Oregui Bengoechea, G. Salazar-Alvarez, T. Barth, N. Hedin, High-Performance Magnetic Activated Carbon from Solid Waste from Lignin Conversion Processes. 1. Their Use As Adsorbents for CO₂, ACS Sustain. Chem. Eng. 5 (2017) 3087–3095.

DOI: 10.1021/acssuschemeng.6b02795

Google Scholar

[16] T. Han, X. Lu, Y. Sun, J. Jiang, W. Yang, P.G. Jönsson, Magnetic bio-activated carbon production from lignin via a streamlined process and its use in phosphate removal from aqueous solutions, Sci. Total Environ. 708 (2019) 135069.

DOI: 10.1016/j.scitotenv.2019.135069

Google Scholar

[17] Q. Wu, X. Ye, Y. Lv, R. Pei, M. Wu, M. Liu, Lignin-based magnetic activated carbon for p-arsanilic acid removal: Applications and absorption mechanisms, Chemosphere 258 (2020) 127276.

DOI: 10.1016/j.chemosphere.2020.127276

Google Scholar

[18] I. Bordun, M. Malovanyy, N. Nahurskyi, A. Borysiuk, E. Szymczykiewicz, Structure and Magnetic Properties of Fe₃O₄/C Composites Synthesized from Wheat Straw, Mater. Sci. Forum 1127 (2024) 83–92

DOI: 10.4028/p-ivadf6

Google Scholar

[19] P. Staroń, J. Chwastowski, Yeast-Based Magnetic Biocomposite for Efficient Sorption of Organic Pollutants, Appl. Sci. 14 (2024) 655.

DOI: 10.3390/app14020655

Google Scholar

[20] Z.A. Duryagina, R.L. Holyaka, A.K. Borysyuk, The Automated Wide-Range Magnetometer for the Magnetic Phase Analysis of Alloys: Development and Application, Usp. Fiz. Met. 14 (2013) 33–66. (In Ukrainian)

DOI: 10.15407/ufm.14.01.033

Google Scholar

[21] V. Ptashnyk, I. Bordun, M. Malovanyy, P. Chabecki, T. Pieshkov, The change of structural parameters of nanoporous activated carbons under the influence of ultrasonic radiation, Appl. Nanosci. 10 (2020) 4891–4899.

DOI: 10.1007/s13204-020-01393-z

Google Scholar

[22] J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed., Elsevier/Academic Press, Oxford, 2012.

DOI: 10.1016/b978-0-08-097035-6.00001-2

Google Scholar

[23] J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, Cambridge, 2010.

Google Scholar

[24] W.-J. Liu, K. Tian, Y.-R. He, H. Jiang, H.-Q. Yu, High-Yield Harvest of Nanofibers/ Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage, Environ. Sci. Technol. 48 (2014) 13951–13959.

DOI: 10.1021/es504184c

Google Scholar

[25] X. Zhu, F. Qian, Y. Liu, D. Matera, G. Wu, S. Zhang, J. Chen, Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence, Carbon 99 (2016) 338–347.

DOI: 10.1016/j.carbon.2015.12.044

Google Scholar