[1]
R. Sivashankar, A.B. Sathya, K. Vasantharaj, V. Sivasubramanian, Magnetic composite an environmental super adsorbent for dye sequestration: a review, Environ. Nanotechnol. Monit. Manag. 1 (2014) 36-49.
DOI: 10.1016/j.enmm.2014.06.001
Google Scholar
[2]
Y. Wen, Z. Zheng, S. Wang, T. Han, W. Yang, P.G. Jönsson, Magnetic bio-activated carbons production using different process parameters for phosphorus removal from artificially prepared phosphorus-rich and domestic wastewater, Chemosphere, 271 (2021) 129561.
DOI: 10.1016/j.chemosphere.2021.129561
Google Scholar
[3]
S. Rodríguez-Sánchez, P. Díaz, B. Ruiz, S. González, M. Díaz-Somoano, E. Fuente, Food industrial biowaste-based magnetic activated carbons as sustainable adsorbents for anthropogenic mercury emissions, J. Environ. Manage. 312 (2022) 114897.
DOI: 10.1016/j.jenvman.2022.114897
Google Scholar
[4]
G.T. Tee, X.Y. Gok, W.F. Yong, Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review, Environ. Res. 212 (2022) 113248.
DOI: 10.1016/j.envres.2022.113248
Google Scholar
[5]
N. Nahurskyi, M. Malovanyy, I. Bordun, E. Szymczykiewicz, Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review, Chem. Chem. Technol. 18 (2024) 170–187.
DOI: 10.23939/chcht18.02.170
Google Scholar
[6]
G. Rzepa, T. Bajda, T. Ratajczak, Utilization of bog iron ores as sorbents of heavy metals, J. Hazard. Mater. 162 (2009) 1007–1013.
DOI: 10.1016/j.jhazmat.2008.05.135
Google Scholar
[7]
M. Tuchowska, G. Rzepa, K. Debiec-Andrzejewska, L. Drewniak, T. Bajda, Immobilization of arsenic compounds by bog iron ores, Desalin. Water Treat. 157 (2019) 138–147.
DOI: 10.5004/dwt.2019.24126
Google Scholar
[8]
S.I. Siddiqui, S.A. Chaudhry, Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement, Process Saf. Environ. Prot. 111 (2017) 592–626.
DOI: 10.1016/j.psep.2017.08.009
Google Scholar
[9]
M.D. Nguyen, H.-V. Tran, S. Xu, T.R. Lee, Fe₃O₄ Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications, Appl. Sci. 11 (2021) 11301.
DOI: 10.3390/app112311301
Google Scholar
[10]
I. Bordun, E. Szymczykiewicz, Synthesis and Electrochemical Properties of Fe₃O₄/C Nanocomposites for Symmetric Supercapacitors, Appl. Sci. 14 (2024) 677.
DOI: 10.3390/app14020677
Google Scholar
[11]
K.S. Ukanwa, K. Patchigolla, R. Sakrabani, E. Anthony, S. Mandavgane, A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass, Sustainability 11 (2019) 6204.
DOI: 10.3390/su11226204
Google Scholar
[12]
Zuwaina Ali Nasser Alshamsi, Santosh Walke, Utilization of Food Waste for Production of Activated Carbon, International Journal of Electrical Engineering and Technology. 12 (2021) 88–95.
Google Scholar
[13]
J.M. Davidraj, C.I. Sathish, M.R. Benzigar, Z. Li, X. Zhang, R. Bahadur, A. Vinu, Recent advances in food waste-derived nanoporous carbon for energy storage, Sci. Technol. Adv. Mater. 25 (2024) 2357062.
DOI: 10.1080/14686996.2024.2357062
Google Scholar
[14]
A.A. Alalykin, R.L. Vesnin, D.A. Kozulin, Preparation of modified hydrolysis lignin and its use for filling epoxy polymers and enhancing their flame resistance, Russ. J. Appl. Chem. 84 (2011) 1616–1622.
DOI: 10.1134/s1070427211090278
Google Scholar
[15]
W. Hao, F. Björnerbäck, Y. Trushkina, M. Oregui Bengoechea, G. Salazar-Alvarez, T. Barth, N. Hedin, High-Performance Magnetic Activated Carbon from Solid Waste from Lignin Conversion Processes. 1. Their Use As Adsorbents for CO₂, ACS Sustain. Chem. Eng. 5 (2017) 3087–3095.
DOI: 10.1021/acssuschemeng.6b02795
Google Scholar
[16]
T. Han, X. Lu, Y. Sun, J. Jiang, W. Yang, P.G. Jönsson, Magnetic bio-activated carbon production from lignin via a streamlined process and its use in phosphate removal from aqueous solutions, Sci. Total Environ. 708 (2019) 135069.
DOI: 10.1016/j.scitotenv.2019.135069
Google Scholar
[17]
Q. Wu, X. Ye, Y. Lv, R. Pei, M. Wu, M. Liu, Lignin-based magnetic activated carbon for p-arsanilic acid removal: Applications and absorption mechanisms, Chemosphere 258 (2020) 127276.
DOI: 10.1016/j.chemosphere.2020.127276
Google Scholar
[18]
I. Bordun, M. Malovanyy, N. Nahurskyi, A. Borysiuk, E. Szymczykiewicz, Structure and Magnetic Properties of Fe₃O₄/C Composites Synthesized from Wheat Straw, Mater. Sci. Forum 1127 (2024) 83–92
DOI: 10.4028/p-ivadf6
Google Scholar
[19]
P. Staroń, J. Chwastowski, Yeast-Based Magnetic Biocomposite for Efficient Sorption of Organic Pollutants, Appl. Sci. 14 (2024) 655.
DOI: 10.3390/app14020655
Google Scholar
[20]
Z.A. Duryagina, R.L. Holyaka, A.K. Borysyuk, The Automated Wide-Range Magnetometer for the Magnetic Phase Analysis of Alloys: Development and Application, Usp. Fiz. Met. 14 (2013) 33–66. (In Ukrainian)
DOI: 10.15407/ufm.14.01.033
Google Scholar
[21]
V. Ptashnyk, I. Bordun, M. Malovanyy, P. Chabecki, T. Pieshkov, The change of structural parameters of nanoporous activated carbons under the influence of ultrasonic radiation, Appl. Nanosci. 10 (2020) 4891–4899.
DOI: 10.1007/s13204-020-01393-z
Google Scholar
[22]
J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd ed., Elsevier/Academic Press, Oxford, 2012.
DOI: 10.1016/b978-0-08-097035-6.00001-2
Google Scholar
[23]
J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, Cambridge, 2010.
Google Scholar
[24]
W.-J. Liu, K. Tian, Y.-R. He, H. Jiang, H.-Q. Yu, High-Yield Harvest of Nanofibers/ Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage, Environ. Sci. Technol. 48 (2014) 13951–13959.
DOI: 10.1021/es504184c
Google Scholar
[25]
X. Zhu, F. Qian, Y. Liu, D. Matera, G. Wu, S. Zhang, J. Chen, Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence, Carbon 99 (2016) 338–347.
DOI: 10.1016/j.carbon.2015.12.044
Google Scholar